精英家教网 > 高中数学 > 题目详情
如图,A、B两点都在河的对岸(不可到达),某人想测量A、B之间的距离,但只有卷尺和测角仪两种工具,若此人在地面上选一条基线EF,用卷尺测得EF的长度为a,且用测角仪测量了一些角度:∠AEB=α,∠AEF=β,∠BFE=γ,∠AFB=δ.请你用文字和公式写出计算A、B之间距离的步骤.
考点:解三角形的实际应用
专题:应用题,解三角形
分析:第一步:在△BEF中,利用正弦定理,求出BE,第二步:在△AEF中,利用正弦定理,求出AE,第三步:在△ABE中,利用余弦定理,求出AB.
解答: 解:第一步:在△BEF中,
BE
sin∠BFE
=
EF
sin∠FBE

所以BE=
asinγ
sin(α+β+γ)
,…(4分)
第二步:在△AEF中,
AE
sin∠AFE
=
EF
sin∠EAF

所以AE=
asin(γ+δ)
sin(β+γ+δ)
,…(8分)
第三步:在△ABE中,AB=
AE2+BE2-2AE×BEcosα

AB=
a2sin2(γ+δ)
sin2(β+γ+δ)
+
a2sin2γ
sin2(α+β+γ)
-
2a2sin(γ+δ)sinγcosα
sin(β+γ+δ)sin(α+β+γ)
.…(12分)
点评:本题考查利用正弦定理、余弦定理解决实际问题,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
kx+k(a-1),x≥0
1
3
x3-
1
2
ax2+(a-1)x-a2+2a-2,
x<0
其中a∈R,若对任意的非零实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x1)=f(x2)成立,则k的最大值为(  )
A、-1B、-2C、-4D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

把数列{n}(n∈N*),依次按第1个括号一个数,第2个括号两个数,第3个括号三个数,第4个括号四个数,第5个括号一个数,…,循环为(1),(2,3),(4,5,6),(7,8,9,10),(11),(12,13),(14,15,16),(17,18,19,20),(21),…,则第2012个括号内各数之和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lnx+
1
3
x的零点所在的区间是(  )
A、(1,+∞)
B、(
1
e
,1)
C、(0,
1
e
)
D、(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,现采用随机模拟试验的方法估计抛掷这枚硬币三次恰有两次正面朝上的概率;先由计算器产生0或1的随机数,用0表示正面朝上,用1表示反面朝上;再以每三个随机数做为一组,代表这三次投掷的结果,经随机模拟试验产生了如下20组随机数:
101  111  010  101  010  100  100  011  111  110
000  011  010  001  111  011  100  000  101  101
据此估计,抛掷这枚硬币三次恰有两次正面朝上的概率为(  )
A、0.30B、0.35
C、0.40D、0.65

查看答案和解析>>

科目:高中数学 来源: 题型:

(文) 已知函数f(x)=
-3x+a
3x+1+b

(1)当a=b=1时,求满足f(x)≥3x的x的 取值范围;
(2)若y=f(x)是定义域为R的奇函数,求y=f(x)的解析式;
(3)若y=f(x)的定义域为R,判断其在R上的单调性并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2+2x-4y=0,那么圆心坐标是
 
;如果圆C的弦AB的中点坐标是(-2,3),那么弦AB所在的直线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2-a,x≥0
2x+3,x<0

(1)若函数f(x)的图象过点(1,-1),求f(f(0))的值;
(2)若方程f(x)=4有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x+1),g(x)=loga(1-x)(a>0,a≠1)
(Ⅰ)求函数f(x)+g(x)的定义域并判断其奇偶性;
(Ⅱ)求使f(x)+g(x)<0成立的x的取值范围.

查看答案和解析>>

同步练习册答案