精英家教网 > 高中数学 > 题目详情
19.若在△ABC中,tanAtanBtanC>0,试判断三角形的形状.

分析 根据正切函数在(0,π)上的符号进行判断即可.

解答 解:在△ABC中,A,B,C∈(0,π),
若tanAtanBtanC>0,
则tanA>0,tanB>0,tanC>0,
即0<A<$\frac{π}{2}$,0<B<$\frac{π}{2}$,0<C<$\frac{π}{2}$,
则三角形为锐角三角形.

点评 本题主要考查三角形形状的判断,根据正切函数的性质求出角的范围是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ<2π)的部分图象如图所示
(1)写出函数f(x)的最小正周期及解析式(不要求解题过程)
(2)将函数f(x)的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象.求函数g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.把一根长为30cm的铁丝剪成两段,分别作钝角△ABC的两边AB和AC,并使∠BAC=120°,要使△ABC的周长最小,则AB和AC的长分别为15cm与15cm.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.一个家庭要将2个男孩3个女孩送到私立学校,有5所男子学校、8所女子学校,以及3所男女合校,如果每个孩子去不同的学校,这个家庭为它们的孩子可以选择多少组不同的5所学校?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=|x+7|-|3x-4|.
(1)求f(6)的值;
(2)若f(x)>-2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在区间(a,b)内,若f(x)是增函数,g(x)是减函数,则f(x)-g(x)是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知在△ABC中,已知b=6,c=6$\sqrt{2}$,B=30°,则解三角形的结果有(  )
A.无解B.一解C.两解D.一解或两解

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求下列函数的周期,最小值及对应的x值的集合,单调区间及对称中心.
(1)y=-3sin2x+1;
(2)y=sin($\frac{1}{2}$x+$\frac{π}{6}$),x∈[-2π,2π].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.当x2-x<2时,函数y=$\frac{{x}^{2}-x+2}{x+1}$的最小值为1.

查看答案和解析>>

同步练习册答案