精英家教网 > 高中数学 > 题目详情
15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的实轴长,虚轴长,焦距依次成等差数列,则该双曲线的渐近线方程为y=±$\frac{4}{3}$x.

分析 通过双曲线的实轴长、虚轴长、焦距长成等差数列,可得2b=a+c,再由a,b,c的关系,求出a,b的关系式,然后求解双曲线的渐近线方程即可.

解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的实轴长2a、虚轴长2b、焦距长2c成等差数列,
所以4b=2a+2c,及a+c=2b,
又c=$\sqrt{{a}^{2}+{b}^{2}}$,
即有a2+b2=(2b-a)2
化简可得4a=3b,
双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为:y=±$\frac{b}{a}$x.
即为y=±$\frac{4}{3}$x.
故答案为:y=±$\frac{4}{3}$x.

点评 本题考查双曲线的简单性质,考查双曲线的渐近线方程,同时考查等差数列的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知f(x)=alnx+$\frac{1-a}{2}$x2-x,f′(x)=$\frac{(1-a)[x-\frac{a}{1-a}][x-1]}{x}$,若存在x0≥1,使得f(x0)<$\frac{a}{a-1}$,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,内角A,B,C所对的边分别为a,b,c.若b=2$\sqrt{2}$,c=1,tanB=2$\sqrt{2}$,则a=(  )
A.2B.3C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.解不等式:1-$\frac{x+5}{3-2x}$>$\frac{3x+2}{x-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知关于x的方程x2+2ax+b=0有两个实根x1,x2,且x1∈[-1,0],x2∈[1,2].
(1)求a+b的取值范围;
(2)当a+b最小时,不等式x2+2amx+b≥mx2+m在x>-3时恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知p:|x-2|≤5,q:x2-2x+1-m2≤0(m<0),且p是q的必要条件,则实数m的取值范围是[-4,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.化简:$\sqrt{(lo{g}_{2}5)^{2}-4lo{g}_{2}5+4}$=log25-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若直线y=kx+2与圆(x-2)2+(y-3)2=1有两个不同的交点,则实数k的取值范围是(  )
A.(0,$\frac{3}{4}$)B.[0,$\frac{3}{4}$]C.(0,$\frac{4}{3}$)D.[0,$\frac{4}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{x+2y-3≥0}\\{2x+y-3≤0}\end{array}\right.$,$\overrightarrow{a}$=(y,m+x),$\overrightarrow{b}$=(2,-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则m的最小值为(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案