精英家教网 > 高中数学 > 题目详情

【题目】一个袋中装有个形状大小完全相同的小球,球的编号分别为

Ⅰ)若从袋中每次随机抽取个球,有放回的抽取次,求取出的两个球编号之和为的概率.

Ⅱ)若从袋中每次随机抽取个球,有放回的抽取次,求恰有次抽到号球的概率.

Ⅲ)若一次从袋中随机抽取个球,记球的最大编号为,求随机变量的分布列.

Ⅳ)若从袋中每次随机抽取个球,有放回的抽取次,记球的最大编号为,求随机变量的分布列.

【答案】(1)(2)(3)见解析(4)见解析

【解析】分析:(1)先根据乘法计数原理求总事件数,再求编号之和为的事件数,最后根据古典概型概率公式求结果.(2)先根据组合数求总事件数,再求抽到号球的事件数,根据古典概型概率公式一次抽到号球的概率.最后独立重复试验得恰有次抽到号球的概率..(3)先确定随机变量的取法,分别求对应概率,列表可得分布列,(4)先确定随机变量的取法,分别求对应概率,列表可得分布列.

详解:

Ⅰ)共有种,

和为的共种,

为抽个球,

的概率,

为所求.

可取

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为研究患肺癌与是否吸烟有关,某肿瘤机构随机抽取了40人做相关调查,其中不吸烟人数与吸烟人数相同,已知吸烟人数中,患肺癌与不患肺癌的比为;不吸烟的人数中,患肺癌与不患肺癌的比为.

(1)现从患肺癌的人中用分层抽样的方法抽取5人,再从这5人中随机抽取2人进行调查,求这两人都是吸烟患肺癌的概率;

(2)是否有99.9%的把握认为患肺癌与吸烟有关?

附: ,其中.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知短轴长为2的椭圆直线的横、纵截距分别为,且原点到直线的距离为

1)求椭圆的方程;

2)直线经过椭圆的右焦点且与椭圆交于两点,若椭圆上存在一点满足,求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线关于轴对称,顶点在坐标原点,直线经过抛物线的焦点.

(1)求抛物线的标准方程;

(2)若不经过坐标原点的直线与抛物线相交于不同的两点 ,且满足,证明直线轴上一定点,并求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在参加某次社会实践的学生中随机选取名学生的成绩作为样本,这名学生的成绩全部在分至分之间,现将成绩按如下方式分成组:第一组,成绩大于等于分且小于分;第二组,成绩大于等于分且小于分;第六组,成绩大于等于分且小于等于分,据此绘制了如图所示的频率分布直方图.在选取的名学生中.

Ⅰ)求的值及成绩在区间内的学生人数.

Ⅱ)从成绩小于分的学生中随机选名学生,求最多有名学生成绩在区间内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且.

(1)求数列的通项公式;

(2)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足则该数列的前18项和为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.

(1)当a=3时,求A∩B;

(2)若a>0,且A∩B=,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到焦点的距离,倾斜角

的直线经过焦点,且与抛物线交于两点.

(1)求抛物线的标准方程及准线的方程;

(2)若为锐角,作线段的垂直平分线轴于点,证明为定值,并求此定值.

查看答案和解析>>

同步练习册答案