精英家教网 > 高中数学 > 题目详情

【题目】(1)写出下列两组诱导公式:

①关于的诱导公式;

②关于的诱导公式.

(2)从上述①②两组诱导公式中任选一组,用任意角的三角函数定义给出证明.

【答案】(1)详见解析(2)详见解析

【解析】

1)按要求写出对应公式即可.2)利用任意角定义以及对称性即可证明对应公式.

解:(1)①.

.

(2)①证明:设任意角的终边与单位圆的交点坐标为.

由于角的终边与角的终边关于轴对称,

因此角的终边与单位圆的交点与点关于轴对称,

所以点的坐标是.

由任意角的三角函数定义得,

.

所以..

②证明:设任意角的终边与单位圆的交点坐标为.

由于角的终边与角的终边关于轴对称,

因此角的终边与单位圆的交点与点关于轴对称,

所以点的坐标是.

由任意角的三角函数定义得,

.

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为 . (Ⅰ)求cosB的值;
(Ⅱ)若 ,求a和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面底面,底面为矩形,

.

(1)求证:

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆O的直径,弦CD⊥AB于点M,E是CD延长线上一点,AB=10,CD=8,3ED=4OM,EF切圆O于F,BF交CD于G.
(1)求证:△EFG为等腰三角形;
(2)求线段MG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数为偶函数,求的值;

(2)若,求函数的单调递增区间;

(3)当时,若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生的课外阅读时间情况,某学校随机抽取了50人进行统计分析,把这50人每天阅读的时间(单位:分钟)绘制成频数分布表,如下表所示:

阅读时间

[0,20)

[20,40)

[40,60)

[60,80)

[80,100)

[100,120]

人数

8

10

12

11

7

2

若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作出如图所示的等高条形图:

(1)根据已知条件完成2x2列联表;

男生

女生

总计

阅读达人

非阅读达人

总计

(2)并判断是否有的把握认为“阅读达人”跟性别有关?

附:参考公式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义在的偶函数,在区间是减函数,且图象过点原点,则不等式的解集为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)直线l的极坐标方程是ρ(sinθ+cosθ)=3 , 射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二面角α﹣l﹣β为60°,ABα,AB⊥l,A为垂足,CDβ,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案