精英家教网 > 高中数学 > 题目详情
如图,直线AA1、BB1、CC1相交于点O,AO=A1O,BO=B1O,CO=C1O,形成两个顶点相对、底面水平的三棱锥,设三棱锥高均为1,若上面三棱锥中装有高度为0.5的液体,若液体流入下面的三棱锥,则液体高度为
1-
37
2
1-
37
2
分析:先推导出液体部分三棱锥的体积,然后根据体积比和对应高度立方比之间的关系建立方程,即可解出液体的高度.
解答:解:液体部分的体积为三棱锥体积的
1
8
,流下去后,液体上方空出三棱锥的体积为三棱锥体积的
7
8

设空出三棱锥的高为x,则根据体积之比等于对应高的立方比得
x3
13
=
7
8

解得x=
37
2
,∴液面的高度为1-
37
2

故答案为:1-
37
2
点评:本题主要考查三棱锥的体积公式的计算,以及利用体积比和对应高的立方比之间的关系求棱锥的高,考查学生的计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图2所示,在边长为12的正方形AA'A'1A1中,点B,C在线段AA'上,且AB=3,BC=4,作BB1∥AA1,分别交A1A'1、AA'1于点B1、P,作CC1∥AA1,分别交A1A'1、AA'1于点C1、Q,将该正方形沿BB1、CC1折叠,使得A'A1′与AA1重合,构成如图3所示的三棱柱ABC-A1B1C1
(1)在三棱柱ABC-A1B1C1中,求证:AB⊥平面BCC1B1
(2)求平面APQ将三棱柱ABC-A1B1C1分成上、下两部分几何体的体积之比.
(3)在三棱柱ABC-A1B1C1中,求直线AP与直线A1Q所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=4,过A1、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD-A1C1D1
(1)求几何体ABCD-A1C1D1的体积;
(2)求直线BD1与面A1BC1所成角的大小.(用反三角表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,α⊥β,α∩β=l,A∈α,B∈β,点A在直线l上的射影为A1,点B在l的射影为B1,已知AB=2,AA1=1,BB1=
2
,求:
(Ⅰ)直线AB分别与平面α,β所成角的大小;
(Ⅱ)二面角A1-AB-B1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•北京)如图,三棱柱ABC-A1B1C1的底面是边长为3的正三角形,侧棱AA1垂直于底面ABC,AA1=
3
3
2
,D是CB延长线上一点,且BD=BC.
(1)求证:直线BC1∥平面AB1D;
(2)求二面角B1-AD-B的大小;
(3)求三棱锥C1-ABB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

附加题(必做题)
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4.
(1)设
AD
AB
,异面直线AC1与CD所成角的余弦值为
9
25
,求λ的值;
(2)若点D是AB的中点,求二面角D-CB1-B的余弦值.

查看答案和解析>>

同步练习册答案