精英家教网 > 高中数学 > 题目详情

【题目】黄金分割比例具有严格的比例性,艺术性,和谐性,蕴含着丰富的美学价值.这一比值能够引起人们的美感,被称为是建筑和艺术中最理想的比例.我们把离心率的椭圆称为“黄金椭圆”,则以下四种说法中正确的个数为(

①椭圆是“黄金椭圆;

②若椭圆的右焦点且满足,则该椭圆为“黄金椭圆”;

③设椭圆的左焦点为F,上顶点为B,右顶点为A,若,则该椭圆为“黄金椭圆”;

④设椭圆,的左右顶点分别AB,左右焦点分别是,若成等比数列,则该椭圆为“黄金椭圆”;

A.1B.2C.3D.4

【答案】C

【解析】

分别根据椭圆离心率的公式算出四种说法中每个椭圆的离心率,然后根据黄金椭圆的定义进行判断即可.

,故是“黄金椭圆”;

,则(舍),是“黄金椭圆”;

③由可知,化简可知,则(舍),是“黄金椭圆”;

④若成等比数列,则,则,不是“黄金椭圆.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1),求函数的所有零点;

(2),证明函数不存在极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面与平面平行的充分条件可以是(

A.内有无穷多条直线都与平行

B.直线,且直线a不在内,也不在

C.直线,直线,且

D.内的任何一条直线都与平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为

(l)设为参数,若,求直线的参数方程;

2)已知直线与曲线交于,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)ax(ab∈Z),曲线yf(x)在点(2f(2))处的切线方

程为y3.

(1)f(x)的解析式;

(2)证明:曲线yf(x)上任一点的切线与直线x1和直线yx所围三角形的面积为定值,

并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.

1)根据频率分布直方图计算图中各小长方形的宽度;

2)估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入x(单位:万元)

1

2

3

4

5

销售收益y(单位:万元)

1

3

4

7

表中的数据显示,xy之间存在线性相关关系,请将(2)的结果填入上表的空白栏,并计算y关于x的回归方程.

回归直线的斜率和截距的最小二乘法估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为研究女高中生身高与体重之间的关系,一调查机构从某中学中随机选取8名女高中生,其身高和体重数据如下表所示:

编号

1

2

3

4

5

6

7

8

身高

164

160

158

172

162

164

174

166

体重

60

46

43

48

48

50

61

52

该调查机构绘制出该组数据的散点图后分析发现,女高中生的身高与体重之间有较强的线性相关关系.

1)调查员甲计算得出该组数据的线性回归方程为,请你据此预报一名身高为的女高中生的体重;

2)调查员乙仔细观察散点图发现,这8名同学中,编号为14的两名同学对应的点与其他同学对应的点偏差太大,于是提出这样的数据应剔除,请你按照这名调查人员的想法重新计算线性回归话中,并据此预报一名身高为的女高中生的体重;

3)请你分析一下,甲和乙谁的模型得到的预测值更可靠?说明理由.

附:对于一组数据,其回归方程的斜率和截距的最小二乘法估计分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆,定义椭圆的“相关圆”方程为.若抛物线的焦点与椭圆的一个焦点重合,且椭圆短轴的一个端点和其两个焦点构成直角三角形.

(1)求椭圆的方程和“相关圆”的方程;

(2)过“相关圆”上任意一点的直线与椭圆交于两点.为坐标原点,若,证明原点到直线的距离是定值,并求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC,A,B,C所对的边分別为a,b,c,asinAcosC+csinAcosA=c.

(1)c=1,sinC=,ABC的面积S;

(2)DAC的中点,cosB=,BD=,ABC的三边长.

查看答案和解析>>

同步练习册答案