精英家教网 > 高中数学 > 题目详情

【题目】抛物线的顶点为坐标原点O,焦点F在轴正半轴上,准线与圆相切.

)求抛物线的方程;

)已知直线和抛物线交于点,命题若直线过定点(0,1),则

请判断命题的真假,并证明.

【答案】命题P为真命题

【解析】

试题分析:)设抛物线C的方程为:x2=2py,p>0,由已知条件得圆心(0,0)到直线l的距离,由此能求出抛物线线C的方程;)设直线m:y=kx+1,交点A ,B 联立抛物线C的方程,得x2-4kx-4=0,=16k2+16>0恒成立,由此利用韦达定理能证明命题P为真命题

试题解析:)依题意,可设抛物线C的方程为:

其准线的方程为:

准线相切 解得p=4

故抛物线线C的方程为:………….5分

)命题p为真命题 ……………………………………6分

直线m和抛物线C交于A,B且过定点(0,1),

故所以直线m的斜率k一定存在,………………………7分

设直线m:,交点,联立抛物线C的方程,

恒成立,………8分

由韦达定理得………………………………………9分

=

命题P为真命题.………………………………………12分.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】潍坊文化艺术中心的观光塔是潍坊市的标志性建筑,某班同学准备测量观光塔的高度单位:米),如图所示,垂直放置的标杆的高度米,已知 .

1)该班同学测得一组数据: 请据此算出的值;

2该班同学分析若干测得的数据后,发现适当调整标杆到观光塔的距离单位:米),使的差较大,可以提高测量精确度,若观光塔高度为136米,问为多大时, 的值最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)证明:对于 在区间上有极小值,且极小值大于0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (m∈Z)为偶函数,且在(0,+∞)上为增函数.
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)﹣ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U={R},集合A={x|log2(3﹣x)≤2},集合B=
(1)求A,B;
(2)求(CUA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点与抛物线的焦点重合,点

)求 的方程;

)直线不过原点O且不平行于坐标轴,有两个交点,线段的中点为,证明:的斜率与直线的斜率的乘积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计算下列各式的值:
(1) ﹣( 0+( 0.5+
(2)lg500+lg lg64+50(lg2+lg5)2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M≥0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的一个上界.已知函数f(x)=1+a( x+( x , 若函数f(x)在[﹣2,1]上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ (x≠0).
(1)判断并证明函数在其定义域上的奇偶性;
(2)判断并证明函数在(2,+∞)上的单调性;
(3)解不等式f(2x2+5x+8)+f(x﹣3﹣x2)<0.

查看答案和解析>>

同步练习册答案