精英家教网 > 高中数学 > 题目详情
某供货商拟从码头A发货至其对岸l的两个商场B,C处,通常货物先由A处船运至BC之间的中转站D,再利用车辆转运.如图,码头A与两商场B,C的距离相等,两商场间的距离为20千米,且∠BAC=
π
2
.若一批货物从码头A
至D处的运费为100元/千米,这批货到D后需分别发车2辆、4辆转运至B、C处,每辆汽车运费为25元/千米.设∠ADB=α,该批货总运费为S元.
(Ⅰ)写出S关于α的函数关系式,并指出α的取值范围;
(Ⅱ)当α为何值时,总运费S最小?并求出S的最小值.
考点:导数在最大值、最小值问题中的应用,基本不等式在最值问题中的应用,不等式的实际应用
专题:应用题,导数的综合应用
分析:(Ⅰ)求出AD,BD,CD,利用S=AD×100+BD×25×2+CD×25×4,写出S关于α的函数关系式,并指出α的取值范围;
(Ⅱ)换元,利用导数,即可求出当α为何值时,总运费S的最小值.
解答: 解:(Ⅰ)依题意,在Rt△ABC中,2AB2=202
AB=10
2
.…(1分)
又∵在△ABD中,∠ABD=
π-
π
2
2
=
π
4
,∠ADB=α,
AD
sin
π
4
=
AB
sinα
,得AD=
10
sinα
…(2分)
BD
sin[π-(α+
π
4
)]
=
AB
sinα
,得BD=
10
2
sin(α+
π
4
)
sinα
,…(3分)
CD=20-
10
2
sin(α+
π
4
)
sinα
. …(4分)
∴S=AD×100+BD×25×2+CD×25×4=
10
sinα
×100+
10
2
sin(α+
π
4
)
sinα
×50+[20-
10
2
sin(α+
π
4
)
sinα
]×100

=2000+
1000-500
2
sin(α+
π
4
)
sinα
,其中α的取值范围是(
π
4
, 
4
)
.    …(7分)
(Ⅱ)由(Ⅰ)S=2000+
1000-500
2
sin(α+
π
4
)
sinα
=1500+500×
2-cosα
sinα
,…(8分)
f(α)=
2-cosα
sinα

f′(α)=
sinα•sinα-cosα(2-cosα)
sin2α
=
1-2cosα
sin2α
,…(9分)
由f′(α)=0得:cosα=
1
2

又∵α∈(
π
4
, 
4
)

α=
π
3
.  …(10分)
α∈(
π
4
, 
π
3
)
时,f′(α)<0,
α∈(
π
3
, 
4
)
时,f′(α)>0,…(11分)
f(α)min=f(
π
3
)=
2-
1
2
3
2
=
3
. …(12分)
Smin=1500+500
3
(元),
∴当α=
π
3
时,运输费用S的最小值为(1500+500
3
)
元.…(13分)
点评:本题主要考查三角函数的恒等变换、解三角形、函数与导数等基础知识,考查推理论证能力、抽象概括能力和运算求解能力,考查应用意识,考查数形结合思想、函数与方程思想、化归与转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分布直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间[2,4]的有8人.

(1)求直方图中a的值及甲班学生每天平均学习时间在区间(10,12]的人数;
(2)从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,-3,5)
与向量
b
=(-4,x,y)
平行,则x,y的值分别是(  )
A、-6和10
B、6和-10
C、-6和-10
D、6和10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2-4x-4=0上的点P(x,y),则x2+y2的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为保护环境,绿色出行,某高校今年年初成立自行车租赁公司,初期投入36万元,建成后每年收入25万元,该公司第n年需要付出的维修费用记作an万元,已知{an}为等差数列,相关信息如图所示.
(1)设该公司前n年总盈利为y万元,试把y表示成n的函数,并求出y的最大值;(总盈利即n年总收入减去成本及总维修费用)
(2)该公司经过几年经营后,年平均盈利最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-(1+λ)x2+2(1-λ)x+1在[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,且f(A)=2cos
A
2
sin(π-
A
2
)+sin2
A
2
-cos2
A
2

(1)求函数f(x)的单调区间;
(2)若f(A)=0,a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(1,0),
b
=(
1
2
1
2
),给出下列四个结论:
①|
a
|=|
b
|
a
b
=
2
2

a
-
b
b
垂直
④函数f(x)=3tan(2πx+
π
3
)的最小正周期为
a
b

其中正确的是(  )
A、①④B、③④C、①③D、②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:“?x∈R,x2+1<0”的否定是
 

查看答案和解析>>

同步练习册答案