精英家教网 > 高中数学 > 题目详情
下列函数中是奇函数,且在区间(0,+∞)上单调递增的是(  )
A、y=2x
B、y=-x2
C、y=x3
D、y=-3x
考点:奇偶性与单调性的综合
专题:函数的性质及应用
分析:分别判断函数的奇偶性和单调性即可.
解答: 解:A.y=2x为非奇非偶函数,不满足条件.
B.y=-x2为偶函数,不满足条件.
C.y=x3是奇函数,且在区间(0,+∞)上单调递增的,满足条件.
D.y=-3x是奇函数,在定义域为减函数,不满足条件.
故选:C
点评:本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某客运部门规定甲、乙两地之间旅客托运行李的费用为:不超过25kg按0.5元/kg收费,超过25kg的部分按0.8元/kg收费,计算收费的程序框图如右图所示,则①②处应填(  )
A、y=0.8xy=0.5x
B、y=0.5xy=0.8x
C、y=0.8x-7.5y=0.5x
D、y=0.8x+12.5y=0.8x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)<0定义在R上的奇函数,当x>0时,f(x)=xlnx,给出下列命题中正确命题个数是:(  )
①当x<0时,f(x)=xln(-x)            
②函数f(x)有2个零点
③f(x)>0的解集为(-1,0)∪(1,+∞)     
④?x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤
2
e
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

若a,b,c是△ABC三个内角的对边,且asinA+bsinB=
1
2
csinC,则圆M:x2+y2=9被直线l:ax-by+c=0所截得的弦长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在复平面内,复数z=
1+i
3-4i
的共轭复数
.
z
对应的点位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z1=1+i,z2=2+xi,(x∈R),若z1•z2∈R,则x的值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:sin2(A+45°)+sin2(A-45°)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知2sinα-cosα=0,求
1+2sin(π-α)cos(-2π-α)
sin2(-α)-sin2(
5
2
π-α)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,以O为极点,X轴正半轴为极轴建立坐标系,直线l的极坐标方程为ρcos(θ-
π
3
)=
a-b
2
,与曲线C:ρ=
2
交于A,B两点,已知|AB|≥
6

(1)求直线l与曲线C的直角坐标方程;
(2)若动点P(a,b)在曲线C围成的区域内运动,求点P所表示的图形的面积.

查看答案和解析>>

同步练习册答案