精英家教网 > 高中数学 > 题目详情

已知数列{an}满足:a1=1,an=2an-1+1(n≥2),则a4=


  1. A.
    30
  2. B.
    14
  3. C.
    31
  4. D.
    15
D
分析:把已知的等式an=2an-1+1变形,得到an+1=2(an-1+1),同时求出当n=2时得到a2+1=2(a1+1),将a1的值代入求出a2+1的值,确定出数列{an+1}以2为首项,2为公比的等比数列,表示出等比数列的通项公式,可得出an的通项公式,令n=4即可求出a4的值.
解答:∵an=2an-1+1,
∴an+1=2(an-1+1),
令n=2得:a2+1=2(a1+1),又a1=1,
∴a2+1=4,a1+1=2,
∴数列{an+1}以2为首项,2为公比的等比数列,
则通项公式为an+1=2n,即an=2n-1,
则a4=24-1=15.
故选D
点评:此题考查了等比数列的性质,等比数列的通项公式,以及等比数列的确定,熟练掌握等比数列的性质是解本题饿关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案