精英家教网 > 高中数学 > 题目详情
2.椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的焦点的坐标为(  )
A.(0,5)和(0,-5)B.($\sqrt{7}$,0)和(-$\sqrt{7}$,0)C.(0,$\sqrt{7}$)D.(5,0)和(-5,0)

分析 由椭圆方程求出a,b,以及焦点所在的坐标轴,由a、b、c的关系求出c,即可得到焦点坐标.

解答 解:由$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}=1$得,a=4、b=3,且焦点在x轴上,
则c=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{16-9}$=$\sqrt{7}$,
∴椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的焦点的坐标为(-$\sqrt{7}$,0)、($\sqrt{7}$,0),
故选:B.

点评 本题考查椭圆的方程和性质,掌握椭圆的a,b,c的关系和焦点的位置是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x-1),x>1}\\{{3}^{x}+2,x≤1}\end{array}\right.$则f(f(log32))的值是(  )
A.1B.2C.5D.1+log32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.直线l:x-y+1=0与抛物线y=x2交于A,B两点,若点M(1,2),则|MA|•|MB|的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,海岸线上相距5海里的两座灯塔A、B,灯塔B位于A的正南方向,海上停泊着两艘轮船,甲船位于灯塔A的北偏西75°方向与A相距$3\sqrt{2}$海里的D处,乙船位于灯塔B的北偏西60°方向与B相距5海里的C处,则两艘轮船相距(  )海里.
A.$2\sqrt{3}$B.$\sqrt{13}$C.$3\sqrt{2}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品.从两个分厂生产的零件中抽出500件,量其内径尺寸的结果如表:
甲厂
分组[29.86,
29.90)
[29.90,
29.94)
[29.94,
29.98)
[29.98,
30.02)
[30.02,
30.06)
[30.06,
30.10)
[30.10,
30.14)
频数12638618292614
乙厂
分组[29.86,
29.90)
[29.90,
29.94)
[29.94,
29.98)
[29.98,
30.02)
[30.02,
30.06)
[30.06,
30.10)
[3 0.10,
30.14)
频数297185159766218
(1)试分别估计两个分厂生产的零件的优质品率;
(2)由于以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.
甲厂乙厂合计
优质品   
非优质品   
合计   
下面的临界值表供参考:(参考公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P=(K2≥k00.150.100.05[0.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数的单调区间
①y=sin($\frac{1}{2}$x+$\frac{π}{3}$)
②y=sin($\frac{1}{2}$x+$\frac{π}{3}$)x∈[-$\frac{π}{2}$,$\frac{π}{2}$]
③y=sin(-$\frac{1}{2}$x+$\frac{π}{6}$)
④y=log${\;}_{\frac{1}{2}}$sin($\frac{1}{2}$x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在平面直角坐标系xOy中,若动点P(a,b)到直线l1:y=x,l2:y=-x+1的距离分别为d1,d2,且满足d1+2d2=2$\sqrt{2}$,则a2+b2的最大值为$\frac{17}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)已知矩阵$M=[{\begin{array}{l}2&a\\ b&1\end{array}}]$,其中a,b均为实数,若点A(3,-1)在矩阵M的变换作用下得到点B(3,5),求矩阵M的特征值.
(2)在极坐标系中,设直线$θ=\frac{π}{3}$与曲线ρ2-10ρcosθ+4=0相交于A,B两点,求线段AB中点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.化简:$\frac{sin(θ-π)si{n}^{2}(θ+\frac{π}{2})tan(θ+3π)}{cos(2π-θ)cos(-\frac{3π}{2}+θ)sin(π+θ)}$.

查看答案和解析>>

同步练习册答案