精英家教网 > 高中数学 > 题目详情

已知:,求证:

 

【答案】

运用分析法来证明不等式即可,找到结论成立的充分条件。

【解析】

试题分析:要证,只要证即可,

从而只要证即只需证即证,而此不等式显然成立,故原不等式成立。

考点:分析法

点评:主要是对于无理根式的不等式的证明,要利用分析法,从结论入手来分析不等式成立的条件,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知α+β=
π2
,求证:sin(2α+β)tanα+cos(α+2β)cotβ=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知,且

   求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列的前项和为,已知

(Ⅰ)求证:数列为等差数列,并写出关于的表达式;

(Ⅱ)若数列项和为,问满足的最小正整数是多少? .   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省南乐县实验高级中学高二下学期期中考试文科数学试卷(带解析) 题型:解答题

已知,且求证:中至少有一个是负数。

查看答案和解析>>

科目:高中数学 来源:2013届福建省高二下学期第一次月考文科数学试卷(解析版) 题型:选择题

已知△ABC中,求证:a<b?. 证明:

 

∴a<b.

框内部分是演绎推理的(    )

A、大前提      B、小前提    C、结论          D、三段论

 

查看答案和解析>>

同步练习册答案