精英家教网 > 高中数学 > 题目详情
(2012•石景山区一模)如图,已知平面α∩β=l,A、B是l上的两个点,C、D在平面β内,且DA⊥α,CB⊥α,AD=4,AB=6,BC=8,在平面α上有一个动点P,使得∠APD=∠BPC,则△PAB面积的最大值是(  )
分析:本题在二面角背景下求三角形的面积,需要借助直二面角的相关知识研究三角形的几何特征,再由面积公式求出面积,由题设条件知两个直角三角形△PAD与△PBC是相似的直角三角形,根据题设条件可得出PB=2PA,作PD⊥AB,垂足为D,令AD=t,将三角形的面积用t表示出来,再研究面积的最值选出正确选项.
解答:解:由题意平面α⊥平面β,A、B是平面α与平面β的交线上的两个定点,DA?β,CB?β,且DA⊥α,CB⊥α,
∴△PAD与△PBC是直角三角形,又∠APD=∠BPC,∴△PAD∽△PBC,又AD=4,BC=8,∴PB=2PA.
作PM⊥AB,垂足为M,则PM⊥β,令AM=t∈R,在两个Rt△PAM与Rt△PBM中,AM是公共边及PB=2PA,∴PA2-t2=4PA2-(6-t)2 ,解得PA2=12-4t.
∴PM=
12-4t-2
,即此四棱锥的高等于
12-4t-2

∴S=
1
2
×AB×PM=
1
2
×6×
12-4t-2
=3
16-(t +2)2
≤12.
即三角形面积的最大值为12,
故选C.
点评:本题考查与二面角有关的立体几何综合题,解答本题,关键是将由题设条件得出三角形的性质、:两邻边的值有2倍的关系,第三边长度为6,引入一个变量,将面积表示成此变量的函数,从而利用函数的最值来研究面积的最值,本题考查了函数最值的思想,转化的思想,数形结合的思想,本题解题过程中将几何问题转化为代数问题求解是几何问题中求最值的常规思想,在近几年的高考中此类题多有出现,本题易因为没有能建立起面积的函数而导致解题失败.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•石景山区一模)在复平面内,复数
2-i
1+i
对应的点位于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)在△ABC中,角A,B,C所对应的边分别为a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若cosA=
2
2
,a=2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)已知函数f(x)=x2+2alnx.
(Ⅰ)若函数f(x)的图象在(2,f(2))处的切线斜率为1,求实数a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若函数g(x)=
2x
+f(x)
在[1,2]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.
(1)证明:数列{2an+1}是“平方递推数列”,且数列{lg(2an+1)}为等比数列.
(2)设(1)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项及Tn关于n的表达式.
(3)记bn=log2an+1Tn,求数列{bn}的前n项之和Sn,并求使Sn>2011的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)圆
x=2cosθ
y=2sinθ+2
的圆心坐标是(  )

查看答案和解析>>

同步练习册答案