精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若函数的图象在处的切线与轴平行,求的值;

2)当时,恒成立,求的最小值.

【答案】12

【解析】

1)求解出导函数,根据导函数在的值为即可计算出的值;

2)解法一:采用分类讨论的思想分析的取值范围,确定出最小值;解法二:采用参变分离的思想分析问题,构造新函数,利用新函数的最值与的关系求解出的最小值.

(1)依题意

(2)解法一:

显然,令,则

所以单调递增,且

时,单调递增,

等价于,此式已成立,从而满足条件,

时,由单调递增,

使得,即

,即,得

又令,即,得,因此处取得最小值,

,又,故

,且

法一:,故单调递减,由

单调递减,

所以,即

法二:,由,即下同法一;

综上可知,因此的最小值为

解法二:当时,恒成立,因求的最小值,不妨设

则只研究,设,下求

,由,并记

,亦即

,因此单调递增,在单调递减,

所以,即,因此的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某无缝钢管厂只生产甲、乙两种不同规格的钢管,钢管有内外两个口径,甲种钢管内外两口径的标准长度分别为,乙种钢管内外两个口径的标准长度分别为.根据长期的生产结果表明,两种规格钢管每根的长度都服从正态分布,长度在之外的钢管为废品,要回炉熔化,不准流入市场,其他长度的钢管为正品.

1)在该钢管厂生产的钢管中随机抽取10根进行检测,求至少有1根为废品的概率;

2)监管部门规定每种规格钢管的“口径误差”的计算方式为:若钢管的内外两个口径实际长分别为,标准长分别为,则“口径误差”为,按行业生产标准,其中“一级品”“二级品”“合格品”的“口径误差”的范围分别是(正品钢管中没有“口径误差”大于的钢管),现分别从甲、乙两种产品的正品中各随机抽取100根,分别进行“口径误差”的检测,统计后,绘制其频率分布直方图如图所示:

    甲种钢管               乙种钢管

已知经销商经销甲种钢管,其中“一级品”的利润率为0.3,“二级品”的利润率为0.18,“合格品”的利润率为0.1;经销乙种钢管,其中“一级品”的利润率为0.25,“二级品”的利润率为0.15,“合格品”的利润率为0.08,若视频率为概率.

(ⅰ)若经销商对甲、乙两种钢管各进了100万元的货,分别表示经销甲、乙两种钢管所获得的利润,求的数学期望和方差,并由此分析经销商经销两种钢管的利弊;

(ⅱ)若经销商计划对甲、乙两种钢管总共进100万元的货,则分别在甲、乙两种钢管上进货多少万元时,可使得所获利润的方差和最小?

附:若随机变量服从正态分布,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为是椭圆上一动点(与左、右顶点不重合)已知的内切圆半径的最大值为,椭圆的离心率为.

1)求椭圆C的方程;

2)过的直线交椭圆两点,过轴的垂线交椭圆与另一点不与重合).的外心为,求证为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究不同性别在处理多任务时的表现差异,召集了男女志愿者各200名,要求他们同时完成多个任务,包括解题、读地图、接电话.下图表示了志愿者完成任务所需的时间分布.以下结论,对志愿者完成任务所需的时间分布图表理解正确的是(

①总体看女性处理多任务平均用时更短;

②所有女性处理多任务的能力都要优于男性;

③男性的时间分布更接近正态分布;

④女性处理多任务的用时为正数,男性处理多任务的用时为负数.

A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点 与上顶点的距离为

(Ⅰ)求椭圆的方程和焦点的坐标;

(Ⅱ)点在椭圆上,线段的垂直平分线与轴相交于点,若为等边三角形,求点的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某学校高三年级共1000名男生中随机抽取50人测量身高,据测量,被测学生身高全部介于之间,将测量结果按如下方式分成八组:第一组,第二组,…,第八组.如图是按上述分组方法得到的频率分布直方图的一部分.其中第六组、第七组、第八组人数依次构成等差数列.

(1)求第六组、第七组的频率,并估计高三年级全体男生身高在以上(含)的人数;

(2)学校决定让这五十人在运动会上组成一个高旗队,在这五十人中要选身高在以上(含)的两人作为队长,求这两人在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.2018年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本2500万元,每生产x(百辆),需另投入成本万元,且.由市场调研知,每辆车售价5万元,且全年内生产的车辆当年能全部销售完.

1)求出2018年的利润Lx)(万元)关于年产量x(百辆)的函数关系式;(利润=销售额-成本)

22018年产量为多少百辆时,企业所获利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某少儿游泳队需对队员进行限时的仰卧起坐达标测试.已知队员的测试分数与仰卧起坐

个数之间的关系如下:;测试规则:每位队员最多进行三组测试,每组限时1分钟,当一组测完,测试成绩达到60分或以上时,就以此组测试成绩作为该队员的成绩,无需再进行后续的测试,最多进行三组;根据以往的训练统计,队员“喵儿”在一分钟内限时测试的频率分布直方图如下:

(1)计算值;

(2)以此样本的频率作为概率,求

①在本次达标测试中,“喵儿”得分等于的概率;

②“喵儿”在本次达标测试中可能得分的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为A1,右焦点为F2,过点F2作垂直于x轴的直线交该椭圆于MN两点,直线A1M的斜率为

)求椭圆的离心率;

)若△A1MN的外接圆在M处的切线与椭圆相交所得弦长为,求椭圆方程.

查看答案和解析>>

同步练习册答案