【题目】设是由个有序实数构成的一个数组,记作,其中
称为数组的“元”, 称为的下标,如果数组中的每个“元”都是来自数组
中不同下标的“元”,则称为的子数组,定义两个数组和
的关系数为;
(1)若, ,设是的含有两个“元”的子数组,求
的最大值;
(2)若, ,且, 为的含有三个“元”
的子数组,求的最大值;
(3)若数组中的“元”满足,设数组 含有
四个“元”,且,求与的所有含有三个“元”
的子数组的关系数的最大值;
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn , 且a2=﹣5,S5=﹣20.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求使不等式Sn>an成立的n的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ< )的图象与y轴的交点为(0, ),它的一个对称中心是M( ,0),点M与最近的一条对称轴的距离是 .
(1)求此函数的解析式;
(2)求此函数取得最大值时x的取值集合;
(3)当x∈(0,π)时,求此函数的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某园林公司准备绿化一块半径为200米,圆心角为 的扇形空地(如图的扇形OPQ区域),扇形的内接矩形ABCD为一水池,其余的地方种花,若∠COP=α,矩形ABCD的面积为S(单位:平方米).
(1)试将S表示为关于α的函数,求出该函数的表达式;
(2)角α取何值时,水池的面积 S最大,并求出这个最大面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“斐波那契数列”是数学史上一个著名数列,在斐波那契数列{an}中,a1=1,a2=1,an+2=an+1+an(n∈N*)则a8=;若a2018=m2+1,则数列{an}的前2016项和是 . (用m表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知常数,数列的前项和为, , ;
(1)求数列的通项公式;
(2)若,且是单调递增数列,求实数的取值范围;
(3)若, ,对于任意给定的正整数,是否存在正整数、,使得?若存在,求出、的值(只要写出一组即可);若不存在,请说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示:有三根针和套在一根针上的若干金属片.按下列规则,把金属片从一根针上全部移到另一根针上.
(1)每次只能移动一个金属片;
(2)在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.将n个金属片从1号针移到3号针最少需要移动的次数记为f(n);
①f(3)=;
②f(n)= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数g(x)=mx2﹣2mx+n+1(m>0)在区间[0,3]上有最大值4,最小值0.
(1)求函数g(x)的解析式;
(2)设f(x)= .若f(2x)﹣k2x≤0在x∈[﹣3,3]时恒成立,求k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com