精英家教网 > 高中数学 > 题目详情

(本题满分16分)已知椭圆的离心率为.

⑴若圆(x-2)2+(y-1)2=与椭圆相交于A、B两点且线段AB恰为圆的直径,求椭圆W方程;

⑵设L为过椭圆右焦点F的直线,交椭圆于M、N两点,且L的倾斜角为600.求的值.

⑶在(1)的条件下,椭圆W的左右焦点分别为F1、 F2,点R在直线l:x-y+8=0上.当∠F1RF2取最大值时,求的值.

 

【答案】

解:(1)设A(x1,y1),B(x2,y2),AB的方程为y-1=k(x-2) 即y=kx+1-2k①

   ∵离心率e=

∴椭圆方程可化为

将①代入②得(1+2k2)x2+4(1-2k)·kx

+2(1-2k)2-2b2=0

∵x1+x2=    ∴k=-1

∴x1x2= 

 

 

∴b2=8    

∴椭圆方程为

(2)设,则由第二定义知 或

 或.

(3)当∠F1RF2取最大值时,过R、F1、F2的圆的圆心角最大,故其半径最小,与直线l相切.

直线l与x轴于S(-8,0),(可证)

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011年江苏省淮安市楚州中学高二上学期期末考试数学试卷 题型:解答题

(本题满分16分)
已知函数,且对任意,有.
(1)求
(2)已知在区间(0,1)上为单调函数,求实的取值范围.
(3)讨论函数的零点个数?(提示)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省高三10月阶段性测试理科数学试卷(解析版) 题型:解答题

(本题满分16分)已知函数为实常数).

(I)当时,求函数上的最小值;

(Ⅱ)若方程在区间上有解,求实数的取值范围;

(Ⅲ)证明:

(参考数据:

 

查看答案和解析>>

科目:高中数学 来源:2013届江苏省高二下期中理科数学试卷(解析版) 题型:解答题

(本题满分16分) 已知椭圆的离心率为分别为椭圆的左、右焦点,若椭圆的焦距为2.

 ⑴求椭圆的方程;

⑵设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线有公共点时,求△面积的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2014届江苏省高一上学期期中考试数学试卷(解析版) 题型:解答题

(本题满分16分)已知函数是定义在上的偶函数,且当时,

(Ⅰ)求的值;

(Ⅱ)求函数上的解析式;

(Ⅲ)若关于的方程有四个不同的实数解,求实数的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:江苏省2009-2010学年高二第二学期期末考试 题型:解答题

本题满分16分)已知圆内接四边形ABCD的边长分别为AB = 2,BC = 6,CD = DA = 4 ;求四边形ABCD的面积.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案