精英家教网 > 高中数学 > 题目详情
如图,正五边形ABCDE中,若把顶点A、B、C、D、E染上红、黄、绿、三种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法共有( )
A.30种
B.27种
C.24种
D.21种
【答案】分析:本题需要分类来解答,首先A选取一种颜色,有3种情况.如果A的两个相邻点颜色相同,2种情况,这时最后两个边也有2种情况;如果A的两个相邻点颜色不同,2种情况,最后两个边有3种情况.根据计数原理得到结果.
解答:解:由题意知本题需要分类来解答,
首先A选取一种颜色,有3种情况.
如果A的两个相邻点颜色相同,2种情况;
这时最后两个边也有2种情况;
如果A的两个相邻点颜色不同,2种情况;
这时最后两个边有3种情况.
∴方法共有3(2×2+2×3)=30种.
故选A.
点评:对于复杂一点的计数问题,有时分类以后,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决,即类中有步,步中有类.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正五边形ABCDE的边长为2,甲同学在△ABC中用余弦定理解得AC=
8-8cos108°
,乙同学在Rt△ACH中解得AC=
1
cos72°
,据此可得cos72°的值所在区间为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图,正五边形ABCDE的边长为2,甲同学在△ABC中用余弦定理解得数学公式,乙同学在Rt△ACH中解得数学公式,据此可得cos72°的值所在区间为


  1. A.
    (0.1,0.2)
  2. B.
    (0.2,0.3)
  3. C.
    (0.3,0.4)
  4. D.
    (0.4,0.5)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建师大附中高三(上)期中数学试卷(理科)(解析版) 题型:选择题

如图,正五边形ABCDE的边长为2,甲同学在△ABC中用余弦定理解得,乙同学在Rt△ACH中解得,据此可得cos72°的值所在区间为( )

A.(0.1,0.2)
B.(0.2,0.3)
C.(0.3,0.4)
D.(0.4,0.5)

查看答案和解析>>

科目:高中数学 来源:2012年福建省厦门市高三3月质量检查数学试卷(理科)(解析版) 题型:选择题

如图,正五边形ABCDE的边长为2,甲同学在△ABC中用余弦定理解得,乙同学在Rt△ACH中解得,据此可得cos72°的值所在区间为( )

A.(0.1,0.2)
B.(0.2,0.3)
C.(0.3,0.4)
D.(0.4,0.5)

查看答案和解析>>

同步练习册答案