精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左,右焦点分别为F1 F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M.

(1)求点M的轨迹的方程;

2)设x轴交于点Q 上不同于点Q的两点RS,且满足,求的取值范围.

【答案】(1) ;(2) .

【解析】试题分析:

1由题意结合抛物线的定义可知动点M的轨迹是以l1为准线,F2为焦点的抛物线,轨迹方程为.

2由题意可得,设,由向量垂直的充要条件可得,由距离公式可得,结合二次函数的性质可得的取值范围是.

试题解析:

1)因为

所以动点M到定直线的距离等于它到定点的距离,

所以动点M的轨迹是以l1为准线,F2为焦点的抛物线,

所以M的轨迹的方程为.

2,设,则

因为,所以,因为

,解得

当且仅当时等号成立,

又因为,所以当,即时,取最小值

的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数, 为常数.

(1)确定的值;

(2)求证: 上的增函数;

(3)若对于区间上的每一个值,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=lnx﹣ax2+x有两个零点,则实数a的取值范围是(
A.(0,1)
B.(﹣∞,1)
C.(﹣∞,
D.(0,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足f(4)=1,f′(x)f(x)的导函数,已知y=f′(x)的图象如图所示,若两个正数a,b满足f(2a+b)<1,的取值范围是____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆E: 两点,O为坐标原点
(1)求椭圆E的方程;
(2)是否存在圆心在原点的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A、B,且 ?若存在,写出该圆的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过椭圆上一点M作圆的两条切线,切点为AB,过AB的直线与轴和轴分别交于,则面积的最小值为( )

A. B. 1 C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某算法的程序框图,则程序运行后输出的结果是(

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某重点中学100位学生在市统考中的理科综合分数,以 分组的频率分布直方图如图.

(1)求直方图中的值;

(2)求理科综合分数的众数和中位数;

(3)在理科综合分数为 的四组学生中,用分层抽样的方法抽取11名学生,则理科综合分数在的学生中应抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆 =1(a>b>0)的左焦点为F,过点F的直线交椭圆于A,B两点.|AF|的最大值是M,|BF|的最小值是m,满足Mm= a2

(1)求该椭圆的离心率;
(2)设线段AB的中点为G,AB的垂直平分线与x轴和y轴分别交于D,E两点,O是坐标原点.记△GFD的面积为S1 , △OED的面积为S2 , 求 的取值范围.

查看答案和解析>>

同步练习册答案