精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=ln(1+x).
(1)若曲线y=f(x)在点(0,f(0))处的切线方程为y=g(x),当x≥0时,f(x)≤ ,求t的最小值;
(2)当n∈N*时,证明:

【答案】
(1)解: f(x)的导数为f′(x)=

f(0)=0,f′(0)=1,切线的方程为y=x,即g(x)=x,

当x≥0时,f(x)≤ ,即为

ln(x+1)﹣ ≤0,x≥0恒成立.

设h(x)=ln(x+1)﹣ ,x≥0,

h(x)≤0,h(1)≤0即t≥﹣1+2ln2>0.

h′(x)= = =﹣

当0<t< 时,0<x< 时,h′(x)>0,h(x)递增,

故0<x< 时,h(x)>h(0)=0,与x≥0,h(x)≤h(0)=0,相矛盾,则0<t< 不合题意.

当t= 时,h′(x)=﹣ <0,h(x)在[0,+∞)递减,

故当x≥0时,h(x)≤h(0)=0,因此t的最小值为


(2)证明:由(1)可得ln(1+x)< ,x≥0,x=0时取得等号.

取x= ,ln = + ),

则ln + ),(1)

ln + ),(2)

…,ln + ),(n)

将n个不等式相加,由对数的运算性质,可得

ln2=ln( )< + +…+ + ),


【解析】(1)求出导数,求得切线的斜率和切点,可得切线的方程,即g(x)=x.由题意可得ln(x+1)﹣ ≤0,x≥0恒成立.设h(x)=ln(x+1)﹣ ,x≥0,求出导数,求得单调区间,可得最小值;(2)由(1)可得ln(1+x)< ,x≥0,x=0时取得等号.取x= ,ln = + ),运用对数的运算性质和累加法,及不等式的性质,即可得证.
【考点精析】关于本题考查的函数的最大(小)值与导数,需要了解求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数.

(1)求的值;

(2)求函数的最小值;

(3)若函数在区间上单调递减,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对一切实数都有 成立,且.

(1)求的值;

(2)求的解析式;

(3)已知,设:当时,不等式 恒成立;Q:当时,是单调函数。如果满足成立的的集合记为,满足Q成立的的集合记为,求A∩(CRB)(为全集).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两个班级共有105名学生,某次数学考试按照“大于等于85分为优秀,85分以下为非优秀”的原则统计成绩后,得到如下列联表。

优秀

非优秀

总计

甲班

10

乙班

30

总计

105

已知从甲、乙两个班级中随机抽取1名学生,其成绩为优秀的概率为.

(1)请完成上面的列联表;

(2)能否有把握认为成绩与班级有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知某曲线C的极坐标方程为,直线的极坐标方程为

1求该曲线C的直角坐标系方程及离心率

2已知点为曲线C上的动点,求点到直线的距离的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计显示,男士喜欢阅读古典文学的有64人,不喜欢的有56人;女士喜欢阅读古典文学的有36人,不喜欢的有44人.

(1)能否在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关系?

(2)为引导市民积极参与阅读,有关部门牵头举办市读书交流会,从这200人中筛选出5名男代表和4名代表,其中有3名男代表和2名女代表喜欢古典文学.现从这9名代表中任选3名男代表和2名女代表参加交流会,记为参加交流会的5人中喜欢古典文学的人数,求的分布列及数学期望

附:,其中

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小学为迎接校运动会的到来,在三年级招募了16名男志愿者和14名女志愿者.调查发现,男、女志愿者中分别各有10人和6人喜欢运动,其余人员不喜欢运动.

1)根据以上数据完成2×2列联表,并说明是否有95%的把握认为性别与喜欢运动有关;

喜欢运动

不喜欢运动

总计

总计

2)如果喜欢运动的女志愿者中恰有4人懂得医疗救护,现从喜欢运动的女志愿者中抽取2名负责处理应急事件,求抽出的2名志愿者都懂得医疗救护的概率.

附:K2

P(K2k0)

0.050

0.025

0.010

0.001

k0

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C所对的边分别为a,b,c,已知4sin2
(1)求角C的大小;
(2)若c= ,求a﹣b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,点在椭圆上.

(1)求椭圆的标准方程;

(2)是否存在斜率为的直线与椭圆相交于两点,使得 是椭圆的左焦点?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案