精英家教网 > 高中数学 > 题目详情
12.P为△ABC边BC上的点,满足3$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,则$\frac{1}{m}$+$\frac{2}{n}$的最小值为(  )
A.$\frac{2\sqrt{2}}{3}$+1B.2$\sqrt{3}$C.2D.2$\sqrt{2}$+3

分析 P为△ABC边BC上的点,满足3$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,可得$\frac{m}{3}+\frac{n}{3}$=1.(m,n>0).再利用“乘1法”与基本不等式的性质即可得出.

解答 解:∵P为△ABC边BC上的点,满足3$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,
∴$\frac{m}{3}+\frac{n}{3}$=1.(m,n>0).
则$\frac{1}{m}$+$\frac{2}{n}$=$\frac{1}{3}$(m+n)$(\frac{1}{m}+\frac{2}{n})$=$\frac{1}{3}(3+\frac{n}{m}+\frac{2m}{n})$$≥\frac{1}{3}(3+2\sqrt{\frac{n}{m}•\frac{2m}{n}})$=$\frac{1}{3}(3+2\sqrt{2})$,当且仅当n=$\sqrt{2}$m=6-3$\sqrt{2}$时取等号.
故选:A.

点评 本题考查了向量共线定理、“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在下列三个命题中,真命题的个数是(  )
①?x0∈Z,x03<0;
②方程ax2+2x+1=0至少有一个负实数根的充分条件是a=0;
③抛物线y=4x2的准线方程是:y=1.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知1<m<4,F1,F2为曲线$C:\frac{x^2}{4}+\frac{y^2}{4-m}=1$的左、右焦点,点P为曲线C与曲线$E:{x^2}-\frac{y^2}{m-1}=1$在第一象限的交点,直线l为曲线C在点P处的切线,若三角形F1PF2的内心为点M,直线F1M与直线l交于N点,则点M,N横坐标之和为(  )
A.1B.2C.3D.随m的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知双曲线C的渐近线方程为y=±$\frac{1}{2}$x,点(3,$\sqrt{2}$)在双曲线上.
(1)求双曲线C的方程;
(2)过点P(0,1)的直线l交双曲线C于A,B两点,交x轴于点Q(点Q与双曲线的顶点不重合),当$\overrightarrow{PQ}$=λ$\overrightarrow{QA}$=μ$\overrightarrow{QB}$,且λ•μ=-5时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|y=$\sqrt{x-2}$},B={x|x2-4<0},则A∪B=(  )
A.B.(2,+∞)C.(-2,+∞)D.[0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C1:$\frac{{x}^{2}}{4}$+y2=1和圆C2:x2+y2=4,A,B,F分别为椭圆C1左顶点、右顶点和左焦点.
(1)点P是曲线C2上位于第一象限的一点,若△OPF的面积为$\frac{3}{2}$,求∠OPB;
(2)点M和N分别是椭圆C1和圆C2上位于x轴上方的动点,且直线AN的斜率是直线AM斜率的2倍,证明直线MN⊥x轴.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知四棱锥P-ABCD的直观图与三视图如图所示,其中正(主)视图与侧(左)视图为直角三角形,俯视图为正方形(数据如图所示),已知该几何体的体积为$\frac{2}{3}$.
(1)求实数a的值;
(2)将△PAB绕PB旋转一周,求所得旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数a>0,b>0,若2a+b=1,则$\frac{1}{a}+\frac{2}{b}$的最小值是(  )
A.$\frac{8}{3}$B.$\frac{11}{3}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1与曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1的(  )
A.实轴长相等B.离心率相等C.范围相同D.渐近线相同

查看答案和解析>>

同步练习册答案