精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,若关于的不等式恒成立,求的取值范围;

(2)当时,证明: .

【答案】(1).(2)见解析.

【解析】试题分析:(1)由,得恒成立,令.求出的最小值,即可得到的取值范围;

为数列的前项和,为数列的前项和.

∴只需证明 即可.

试题解析:

(1)由,得 .

整理,得恒成立,即.

.则.

∴函数上单调递减,在上单调递增.

∴函数的最小值为.

,即.

的取值范围是.

(2)∵为数列的前项和,为数列的前项和.

∴只需证明 即可.

由(1),当时,有,即.

,即得 .

.

现证明

.

现证明.

构造函数

.

∴函数上是增函数,即.

∴当时,有,即成立.

,则式成立.

综上,得 .

对数列分别求前项和,得

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,函数Fx=min{2|x1|x22ax+4a2}

其中min{pq}=

)求使得等式Fx=x22ax+4a2成立的x的取值范围;

)()求Fx)的最小值ma);

)求Fx)在区间[0,6]上的最大值Ma.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

1)求的值;

2)判断并证明函数的单调性;

3)若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,梯形中,的中点,将沿翻折,构成一个四棱锥,如图2.

(1)求证:异面直线垂直;

(2)求直线与平面所成角的大小;

(3)若三棱锥的体积为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学著作《算法统宗》中记载了这样的一个问题:三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还,其大意为:有一个人走了378里路,第一天健步行走,从第二天起其因脚痛每天走的路程为前一天的一半,走了6天后到达了目的地,问此人第三天走的路程里数为(

A.192B.48C.24D.88

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆经过伸缩变换后得到曲线以坐标原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线的极坐标方程为

(1)求曲线的直角坐标方程及直线的直角坐标方程;

(2)设点上一动点,求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)写出直线的直角坐标方程;

(2)设点的坐标为,若点是曲线截直线所得线段的中点,求的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知棱台,平面平面DE分别是的中点。

)证明:

)求与平面所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】政府工作报告指出,2018年我国深入实施创新驱动发展战略,创新能力和效率进一步提升;2019年要提升科技支撑能力,健全以企业为主体的产学研一体化创新机制.某企业为了提升行业核心竞争力,逐渐加大了科技投入;该企业连续6年来的科技投入(百万元)与收益(百万元)的数据统计如下:

科技投入

2

4

6

8

10

12

收益

根据散点图的特点,甲认为样本点分布在指数曲线的周围,据此他对数据进行了一些初步处理,如下表:

其中.

(1)(i)请根据表中数据,建立关于的回归方程(保留一位小数);

ii)根据所建立的回归方程,若该企业想在下一年的收益达到2亿,则科技投入的费用至少要多少(其中)?

(2)乙认为样本点分布在二次曲线的周围,并计算得回归方程为,以及该回归模型的相关指数,试比较甲、乙两位员工所建立的模型,谁的拟合效果更好.

附:对于一组数据,…,,其回归直线方程的斜率和截距的最小二乘估计分别为,相关指数:.

查看答案和解析>>

同步练习册答案