精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}满足:a1=﹣13,a6+a8=﹣2,且an1=2an﹣an+1(n≥2),则数列{ }的前13项和为(
A.
B.﹣
C.
D.﹣

【答案】B
【解析】解:an1=2an﹣an+1(n≥2), 可得an+1﹣an=an﹣an1
可得数列{an}为等差数列,设公差为d,
由a1=﹣13,a6+a8=﹣2,即为2a1+12d=﹣2,
解得d=2,
则an=a1+(n﹣1)d=2n﹣15.
= = ),
即有数列{ }的前13项和为 + +…+
= ×(﹣ )=﹣
故选:B.
【考点精析】本题主要考查了数列的前n项和的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】南京市江北新区计划在一个竖直长度为20米的瀑布正前方修建一座观光电梯。如图所示,瀑布底部距离水平地面的高度60米,电梯上设有一个安全拍照口 上升的最大高度为60米。设距离水平地面的高度为米, 处拍照瀑布的视角。摄影爱好者发现,要使照片清晰,视角不能小于

1)当米时,视角恰好为,求电梯和山脚的水平距离

2)要使电梯拍照口的高度52米及以上时,拍出的照片均清晰,请求出电梯和山脚的水平距离的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对一批共50件的某电器进行分类检测,其重量(克)统计如下:

质量段

[80,85)

[85,90)

[90,95)

[95,100]

件数

5

a

15

b

规定重量在82克及以下的为“A”型,重量在85克及以上的为“B”型,已知该批电器有“A“型2件
(1)从该批电器中任选1件,求其为“B”型的概率;
(2)从重量在[80,85)的5件电器中,任选2件,求其中恰有1件为“A”型的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点, 轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线的极坐标方程为,曲线的极坐标方程为).

(Ⅰ)设为参数,若,求直线的参数方程;

(Ⅱ)已知直线与曲线交于 ,设,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A,B,C所对的边分别为a,b,c,∠A是锐角,且 b=2asinB.
(1)求∠A的度数;
(2)若a=7,△ABC的面积为10 ,求b2+c2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn=2n2 , {bn}为等比数列,且a1=b1 , b2(a2﹣a1)=b1
(1)求数列{an}和{bn}的通项公式;
(2)设cn= ,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中内角A,B,C的对边分别为a,b,c,向量 =(2sinB,﹣ ), =(cos2B,2cos2 ﹣1)且
(1)求锐角B的大小;
(2)如果b=2,求△ABC的面积SABC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对边分别为a,b,c,且a+c=6,b=2,cosB=
(1)求a,c的值;
(2)求sin(A﹣B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知a+b=5,c= ,且4sin2 ﹣cos2C=
(1)求角C的大小;
(2)求△ABC的面积.

查看答案和解析>>

同步练习册答案