精英家教网 > 高中数学 > 题目详情
如图,已知⊥平面,且 的中点.
(Ⅰ)求证:∥平面
(Ⅱ)求证:平面BCE⊥平面
(III) 求此多面体的体积.
解:(Ⅰ)取CE中点P,连结FP、BP,
∵F为CD的中点, ∴FP∥DE,且FP=
又AB∥DE,且AB= ∴AB∥FP,且AB=FP,
∴ABPF为平行四边形,∴AF∥BP.         …………3分
又∵AF平面BCE,BP ∴AF∥平面BCE         …………4分
(Ⅱ)∵,所以△ACD为正三角形,∴AF⊥CD
∵AB⊥平面ACD,DE//AB ∴DE⊥平面ACD  又AF平面ACD
∴DE⊥AF  又AF⊥CD,CD∩DE=D
∴AF⊥平面CDE             又BP∥AF ∴BP⊥平面CDE
又∵BP平面BCE ∴平面BCE⊥平面CDE              …………8分
(III)此多面体是一个以C为定点,以四边形ABED为底边的四棱锥,
等边三角形AD边上的高就是四棱锥的高
  
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题共13分) 如图,在三棱锥中,底面ABC
,点分别在棱上,且 
(Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成角的大小的余弦值;
(Ⅲ)是否存在点,使得二面角为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,在三棱柱中,已知侧面.为棱的中点,

(1)求证: ;(2)若,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,给出以下结论:
①AC∥平面A1C1B         ②AC1与BD1是异面直线
③AC⊥平面BB1D1D               ④平面ACB1⊥平面BB1D1D
其中正确结论的个数是(   )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知是边长为1的正方体,求:

⑴直线与平面所成角的正切值;
⑵二面角的大小;
⑶求点到平面的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,点D是AB的中点
(Ⅰ)求证:AC⊥BC1
(Ⅱ)求二面角的平面角的正切值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

侧面都是直角三角形的正三棱锥,底面边长为a,则此棱锥的全面积是
        B        C        D 都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图4,四棱锥P-ABCD的底面ABCD是正方形,PD垂直于底面ABCD,已知四棱锥的正视图,如图5所示,
(Ⅰ)若M是PC的中点,证明:DM⊥平面PBC;
(Ⅱ)求棱锥A-BDM的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

、如图,四棱锥中,底面ABCD为矩形,底面ABCD,AD=PD=1,AB=),E,F分别CD,PB的中点。
(1)求证:EF平面PAB;,
(2)当时,求AC与平面AEF所成角的正弦值。

查看答案和解析>>

同步练习册答案