精英家教网 > 高中数学 > 题目详情

【题目】如图,AB是圆O的直径,弦CD⊥AB于点M,E是CD延长线上一点,AB=10,CD=8,3ED=4OM,EF切圆O于F,BF交CD于G.
(1)求证:△EFG为等腰三角形;
(2)求线段MG的长.

【答案】
(1)证明:连接AF,OF,则A,F,G,M共圆,∴∠FGE=∠BAF

∵EF⊥OF,

∴∠EFG=∠BAF,

∴∠EFG=∠FGE

∴EF=EG,

∴△EFG为等腰三角形


(2)解:由AB=10,CD=8可得OM=3,

∴ED= OM=4EF2=EDEC=48,

∴EF=EG=4

连接AD,则∠BAD=∠BFD,

∴MG=EM﹣EG=8﹣4


【解析】(1)连接AF,OF,则A,F,G,M共圆,∠FGE=∠BAF,证明∠EFG=∠FGE,即可证明:△EFG为等腰三角形;(2)求出EF=EG=4 ,连接AD,则∠BAD=∠BFD,即可求线段MG的长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若直线与曲线相切,求的值;

(2)若函数上不单调,且函数有三个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数,若函数有四个零点a,b.c,d.则a+b+cd的值是___.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面底面.分别是的中点,求证:

(Ⅰ)底面

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是抛物线:上异于原点的动点, 是平面上两个定点.的纵坐标为时,点到抛物线焦点的距离为.

(1)求抛物线的方程;

2)直线于另一点,直线于另一点,记直线的斜率为,直线的斜率为. 求证: 为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|2x+1|+|x﹣a|,a∈R. (Ⅰ)当a=2时,求不等式f(x)<4的解集.
(Ⅱ)当a< 时,对于x∈(﹣∞,﹣ ],都有f(x)+x≥3成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)写出下列两组诱导公式:

①关于的诱导公式;

②关于的诱导公式.

(2)从上述①②两组诱导公式中任选一组,用任意角的三角函数定义给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为且对任意的. .

(1)求并证明的奇偶性;

(2)判断的单调性并证明;

(3);若对任意恒成立求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为菱形,且PA=PD=DA=2,∠BAD=60°
(I)求证:PB⊥AD;
(II)若PB= , 求二面角A﹣PD﹣C的余弦值.

查看答案和解析>>

同步练习册答案