精英家教网 > 高中数学 > 题目详情

【题目】【2018届江苏省泰州中学高三12月月考】已知椭圆的中心为坐标原点,椭圆短轴长为,动点)在椭圆的准线上.

(1)求椭圆的标准方程;

(2)求以为直径且被直线截得的弦长为的圆的方程;

(3)设是椭圆的右焦点,过点的垂线与以为直径的圆交于点,求证:线段的长为定值,并求出这个定值.

【答案】(1) (2) 圆的方程为 (3)

【解析】试题分析:1由已知可得b,又M在准线上,可得a,c关系,解方程即可求出a,写出椭圆标准方程;(2)利用直线与圆相交所得弦心距、半弦长、半径所成直角三角形可得出圆的方程;(3由平几知: ,将OK,OM表示出来,代入上式整理即可求出线段的长为定值2.

试题解析:

(1)由,得

又由点在准线上,得,故,∴从而

所以椭圆方程为

(2)以为直径的圆的方程为

其圆心为,半径

因为以为直径的圆被直线截得的弦长为

所以圆心到直线的距离

所以,解得

所以圆的方程为

(3)由平几知:

直线 ,直线

所以线段的长为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x-1|.

(Ⅰ)解不等式f(x)+f(x+4)≥8;

(Ⅱ)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f().

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856289)[选修4-4:坐标系与参数方程]

直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2(sinθ+cosθ),直线l的参数方程为: (t为参数) .

(Ⅰ)写出圆C和直线l的普通方程;

(Ⅱ)点P为圆C上动点,求点P到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“扶贫帮困”是中华民族的传统美德,某校为帮扶困难同学,采用如下方式进行一次募捐:在不透明的箱子中放入大小均相同的白球七个,红球三个,每位献爱心的参与者投币20元有一次摸奖机会,一次性从箱子中摸球三个(摸完球后将球放回),若有一个红球,奖金10元,两个红球奖金20元,三个全是红球奖金100元.

(1)求献爱心参与者中将的概率;

(2)若该次募捐900位献爱心参与者,求此次募捐所得善款的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数gsinxcosxsin2x,将其图象向左移个单位,并向上移个单位,得到函数facos2b的图象.

(Ⅰ)求实数ab 的值;

(Ⅱ)设函数φgfx,求函数φ的单调递增区间和最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的五种商品有购买意向.已知该网民购买两种商品的概率均为,购买两种商品的概率均为,购买种商品的概率为.假设该网民是否购买这五种商品相互独立.

1)求该网民至少购买4种商品的概率;

2)用随机变量表示该网民购买商品的种数,求的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856299)已知双曲线 (a>0,b>0)的左、右焦点分别是F1F2,点P是其上一点,双曲线的离心率是2,若△F1PF2是直角三角形且面积为3,则双曲线的实轴长为(  )

A. 2 B. C. 2或 D. 1或

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856332)

已知三棱柱ABCA1B1C1如图所示,其中CA⊥平面ABB1A1,四边形ABB1A1为菱形,∠AA1B1=60°,EBB1的中点,FCB1的中点.

(Ⅰ)证明:平面AEF⊥平面CAA1C1

(Ⅱ)若CA=2,AA1=4,求B1到平面AEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

1)若,求曲线在点处的切线方程;

2)若关于的不等式上恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案