精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}满足a1=1,且an=2an1+2n(n≥2,且n∈N*
(1)求证:数列{ }是等差数列;
(2)求数列{an}的通项公式;
(3)设数列{an}的前n项之和Sn , 求证:

【答案】
(1)证明:∵an=2an1+2n(≥2,且n∈N*

∴数列{ }是以 为首项,1为公差的等差数列


(2)解:由(1)得

∴an=


(3)解:∵Sn= + +…+

∴2Sn= + +…+

两式相减可得﹣Sn=1+22+23+…+2n =(3﹣2n)2n﹣3

∴Sn=(2n﹣3)2n+3>(2n﹣3)2n


【解析】(1)利用an=2an1+2n(≥2,且n∈N*),两边同除以2n , 即可证明数列{ }是等差数列;(2)求出数列{ }的通项,即可求数列{an}的通项公式;(3)先错位相减求和,再利用放缩法,即可证得结论.
【考点精析】根据题目的已知条件,利用等差关系的确定和数列的通项公式的相关知识可以得到问题的答案,需要掌握如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即=d ,(n≥2,n∈N)那么这个数列就叫做等差数列;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】由函数y=sin x 的图象经过( )变换,得到函数 y=sin(2x﹣ )的图象.
A.纵坐标不变,横坐标缩小到原来的 ,再向右平移 个单位
B.纵坐标不变,向右平移 个单位,再横坐标缩小到原来的
C.纵坐标不变,横坐标扩大到原来的 2 倍,再向左平移 个单位
D.纵坐标不变,向左平移 个单位,再横坐标扩大到原来的 2 倍

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对于函数f(x)的定义域中任意的x1 , x2(x1≠x2),恒有 成立,则称函数f(x)为“单凸函数”,下列有四个函数:
(1)y=2x;(2)y=lgx;(3) ;(4)y=x2
其中是“单凸函数”的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,an=﹣4n+5,等比数列{bn}的公比q满足q=an﹣an1(n≥2),且b1=a2 , 则|b1|+|b2|+…+|bn|=(
A.1﹣4n
B.4n﹣1
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中, ,且△ABC的周长为
(1)求点A的轨迹方程C;
(2)过点P(2,1)作曲线C的一条弦,使弦被这点平分,求此弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥平面ABCD,AB=PD=a,E为侧棱PC的中点,又作DF⊥PB交PB于点F,则PB与平面EFD所成角为(
A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (2x﹣2﹣x)(a>0,且a≠1).
(1)判断函数f(x)的奇偶性和单调性,并说明理由;
(2)当x∈(﹣1,1)时,总有f(m﹣1)+f(m)<0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线3x﹣y+ =0截以原点O为圆心的圆所得的弦长为
(1)求圆O的方程;
(2)若直线l与圆O切于第一象限,且与坐标轴交于点D、E,当DE长最小时,求直线l的方程;
(3)设M、P是圆O上任意两点,点M关于x轴的对称点为N,若直线MP、NP分别交x轴于点(m,0)和(n,0),问mn是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点G(5,4),圆C1:(x﹣1)2+(y﹣4)2=25,过点G的动直线l与圆C1 , 相交于两点E、F,线段EF的中点为C. (Ⅰ)求点C的轨迹C2的方程;
(Ⅱ)若过点A(1,0)的直线l1:kx﹣y﹣k=0,与C2相交于两点P、Q,线段PQ的中点为M,l1与l2:x+2y+2=0的交点为N,求证:|AM||AN|为定值.

查看答案和解析>>

同步练习册答案