精英家教网 > 高中数学 > 题目详情

【题目】给出如下四个命题:

的充分而不必要条件;

②命题,则函数有一个零点的逆命题为真命题;

③若的必要条件,则的充分条件;

④在中,的既不充分也不必要条件.

其中正确的命题的个数是(

A.1B.2C.3D.4

【答案】A

【解析】

利用四种命题的关系,充要条件,复合命题的真假,逐一判断即可得到结论.

①由,解得;由,解得

所以,“”是“”的必要不充分条件,故命题①错误;

②由函数有一个零点,当时,函数有一个零点,符合题意;当时,由,解得,此时函数有一个零点;

所以,函数有一个零点的等价条件为

故命题“若,则函数有一个零点”的逆命题为“函数有一个零点,则”此命题为假命题,故命题②错误;

③若的必要条件,可得,则,所以的充分条件,故命题③正确;

④在中,若,由于,必有,若都是锐角,有成立;若之一为锐角,必是为锐角,此时有不是钝角,由于,必有,此时有

,当不是锐角时,有,当为锐角时,仍可得到

故“”是“”的充要条件,故命题④错误.

综上,命题③正确.

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程

(2)过点作直线的垂线交曲线两点(轴上方),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)ax(ab∈Z),曲线yf(x)在点(2f(2))处的切线方

程为y3.

(1)f(x)的解析式;

(2)证明:曲线yf(x)上任一点的切线与直线x1和直线yx所围三角形的面积为定值,

并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面四个关于圆锥曲线的命题中,其中真命题为(

A.AB为两个定点,K为非零常数,若,则动点P的轨迹是双曲线

B.方程的两根可分别作为椭圆和双曲线的离心率

C.双曲线与椭圆有相同的焦点

D.已知抛物线,以过焦点的一条弦AB为直径作圆,则此圆与准线相切

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆和双曲线的公共焦点,是他们的一个公共点,且,则椭圆和双曲线的离心率的倒数之和的最大值为___.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC底面BCDEBC=2,CD=,AB=AC

1)证明.

2)设侧面ABC为等边三角形,求二面角C-AD-E的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,分别是的中点.

1)求异面直线所成角的余弦值;

2)棱上是否存在点,使得∥平面?请证明你的结论;

3)求直线与平面所成角的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区为了了解本年度数学竞赛成绩情况,从中随机抽取了个学生的分数作为样本进行统计,按照的分组作出频率分布直方图如图所示,已知得分在的频数为20,且分数在70分及以上的频数为27.

(1)求样本容量以及的值;

(2)在选取的样本中,从竞赛成绩在80分以上(80)的学生中随机抽取2名学生,求所抽取的2名学生中恰有一人得分在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 设椭圆的左焦点为,左顶点为,顶点为B.已知为原点).

(Ⅰ)求椭圆的离心率;

(Ⅱ)设经过点且斜率为的直线与椭圆在轴上方的交点为,圆同时与轴和直线相切,圆心在直线上,且,求椭圆的方程.

查看答案和解析>>

同步练习册答案