精英家教网 > 高中数学 > 题目详情
10.符合条件{1,2}?P?{1,2,3,4}的集合P有2.

分析 根据{1,2}?P?{1,2,3,4},用列举法写出满足条件的集合即可.

解答 解:∵{1,2}?P?{1,2,3,4},
∴P={1,2,3},或P={1,2,4},共2个,
故答案为:2.

点评 此题是个基础题,考查子集与真子集、列举法求有限集合的子集.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知奇函数f(x)是定义在R上的增函数,数列{xn}是一个公差为2的等差数列,满足f(x8)+f(x9)+f(x10)+f(x11)=0,则x2015的值为4011.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),F1、F2分别为椭圆的左、右焦点,M为椭圆的下顶点,直线MF1交椭圆与另一点N.
(1)若△MF2N的周长为16,${S}_{{{△MF}_{1}F}_{2}}$:${S}_{{△{NF}_{1}F}_{2}}$=3:1,求椭圆的标准方程;
(2)过点(3,0)且不垂直于坐标轴的直线与椭圆交于A、B两点,已知点C(t,0),当t∈(0,1)时,求满足|AC|=|BC|的直线AB的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a,b,c分别是△ABC内角A,B,C的对边,且$\sqrt{3}$csinA=acosC.
(I)求C的值;
(Ⅱ)若c=2a,b=2$\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.由直线x+y+2=0,x+2y+1=0,2x+y+1=0围成的三角形区域(包括边界)用不等式(组)可表示为$\left\{\begin{array}{l}{x+y+2≥0}\\{x+2y+1≤0}\\{2x+y+1≤0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)在定义域x∈R上,是以5为周期的奇函数,且f(-2)=1,则f(12)等于(  )
A.1B.-1C.5D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在平面直角坐标系xOy中,设点M(x0,y0)是椭圆C:$\frac{{x}^{2}}{4}$+y2=1上一点,从原点O向圆M:(x-x02+(y-y02=r2作两条切线分别与椭圆C交于点P,Q.直线OP,OQ的斜率分别记为k1,k2
(1)若圆M与x轴相切于椭圆C的右焦点,求圆M的方程;
(2)若r=$\frac{2\sqrt{5}}{5}$,①求证:k1k2=-$\frac{1}{4}$;②求OP•OQ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知0<β<α<$\frac{π}{4}$,cos(α-β)=$\frac{12}{13}$,sin(α+β)=$\frac{3}{5}$,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,则这个数列的公比和项数分别为(  )
A.8,2B.2,4C.4,10D.2,8

查看答案和解析>>

同步练习册答案