精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)为二次函数,且

(1)求f(x)的表达式;

(2)判断函数在(0,+∞)上的单调性,并证明.

【答案】(1);(2)增函数,证明见解析.

【解析】

(1)利用题中所给的条件,先设出函数的解析式,利用将式子化为恒等式,利用对应项系数相等,得到方程组,求得结果;

(2)先化简函数解析式,利用单调性的定义,证明得到函数的单调性,得到结果.

(1)设f(x)=ax2+bx+c(a≠0),

由条件得:a(x+1)2+b(x+1)+c+a(x﹣1)2+b(x﹣1)+c=2x2﹣4x,

从而解得:

所以f(x)=x2﹣2x﹣1;

(2)函数g(x)=在(0,+∞)上单调递增.

理由如下:g(x)==

设设任意x1,x2(0,+∞),且x1<x2

g(x1)﹣g(x2)=﹣()=(x1﹣x2)(1+),

x1,x2(0,+∞),且x1<x2

x1﹣x2<0,1+>0,

g(x1)﹣g(x2)<0,即g(x1)<g(x2),

所以函数g(x)=在(0,+∞)上单调递增

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,AB是⊙O的一条切线,切点为B,直线ADE、CFD、CGE都是⊙O的割线,已知AC=AB.

(1)若CG=1,CD=4.求 的值.
(2)求证:FG∥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构在某一学校随机抽取30名学生参加环保知识测试,测试成绩(单位:分)如图所示,假设得分值的中位数为me , 众数为m0 , 平均值为 ,则(

A.me=m0=
B.me=m0
C.me<m0
D.m0<me

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】12分)已知函数fx=

1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.

2)求该函数在区间[1,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)已知函数f(x)对任意的实数mn都有:f(mn)=f(m)+f(n)-1,

且当x>0时,有f(x)>1.

(1)求f(0).

(2)求证:f(x)在R上为增函数.

(3)若f(1)=2,且关于x的不等式f(ax-2)+f(xx2)<3对任意的x∈[1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资根据长期收益率市场预测投资类产品的收益与投资额成正比投资类产品的收益与投资额的算术平方根成正比已知投资1万元时两类产品的收益分别为0125万元和05万元

1分别写出两类产品的收益与投资额的函数关系;

2该家庭有20万元资金全部用于理财投资问:怎么分配资金能使投资获得最大收益其最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= ,g(x)=ax3﹣x2﹣x+b(a,b∈R,a≠0),g(x)的图象C在x=﹣ 处的切线方程是y=
(1)若求a,b的值,并证明:当x∈(﹣∞,2]时,g(x)的图象C上任意一点都在切线y= 上或在其下方;
(2)求证:当x∈(﹣∞,2]时,f(x)≥g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=f(x)在上是增函数,函数y=f(x+2)是偶函数,则( )

A. f(1)<f(2.5)<f(3.5) B. f(3.5)<f(1)<f(2.5)

C. f(3.5)<f(2.5)<f(1) D. f(2.5)<f(1)<f(3.5)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是( )

A. 至少有一个白球;至少有一个红球 B. 至少有一个白球;红、黑球各一个

C. 恰有一个白球;一个白球一个黑球 D. 至少有一个白球;都是白球

查看答案和解析>>

同步练习册答案