精英家教网 > 高中数学 > 题目详情

在△ABC中,sin2A+cos2B=1,则cosA+cosB+cosC的最大值为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    1
  4. D.
    数学公式
D
分析:利用同角三角函数间的基本关系和已知得到B=A,根据三角形的内角和定理得到C=π-A-B=π-2A,把B和C代入到所求的式子中,利用诱导公式及二倍角的余弦公式化简可得一个关于cosA的二次函数,根据cosA的取值范围,利用二次函数求最值的方法得到原式的最大值.
解答:由sin2A+cos2B=1,得sin2A=sin2B,
∴A=B,又A+B+C=π,得C=π-A-B=π-2A
则cosA+cosB+cosC=2cosA-cos2A=-2cos2A+2cosA+1.
又0<A<,0<cosA<1.
∴cosA=时,有最大值
故选D
点评:此题是把三角函数的化简和二次函数求最值的问题综合在一起的题,要求学生灵活运用三角函数的恒等变换化简求值.学生在求二次函数最大值的时候应考虑自变量的取值范围,判断其顶点能否取到.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,①sin(A+B)+sinC;②cos(B+C)+cosA;③tan
A+B
2
tan
C
2
;④cos
B+C
2
sin
A
2
,其中恒为定值的是(  )
A、②③B、①②C、②④D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,sin(A-B)+sinC=
3
2
,BC=
3
AC
,则∠B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广东模拟)在△ABC中,sin(C-A)=1,sinB=
1
3

(Ⅰ)求sinA的值;
(Ⅱ)设AC=
6
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,“sin(A-B)cosB+cos(A-B)sinB≥1”是“△ABC是直角三角形”的(  )
A、充分不必要条件B、必要不充分条件C、充分必要条件D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案