【题目】设函数f(x)= ,其中向量 =(2cosx,1), =(cosx, sin2x),x∈R.
(1)求f(x)的单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知f(A)=2,b=1,△ABC的面积为 ,求c的值.
【答案】
(1)解:f(x)=2cos2x+ sin2x=cos2x+ sin2x+1=2sin(2x+ )+1,
令2kπ﹣ ≤2x+ ≤2kπ+ ,k∈Z,
解得kπ﹣ ≤x≤kπ+ ,k∈Z,
故f(x)的单调递增区间为[kπ﹣ ,kπ+ ],(k∈Z)
(2)解:由f(A)=2sin(2A+ )+1=2,得sin(2A+ )= ,
而A∈(0,π),所以2A+ ∈( , ),
所以2A+ = ,得A= ,
又S△ABC= bcsinA,所以c= = =2
【解析】(1)此类问题关键是化简f(x)得解析式,利用向量的数量积、利用降幂公式、两角和的正弦公式进行化简,结合y=sinx的图象解出单调区间;(2)先利用f(A)=2解出角A的值,注意是在三角形ABC内解题,角A有限制条件,再利用三角形面积公式即可解出边C的值.
【考点精析】本题主要考查了正弦定理的定义的相关知识点,需要掌握正弦定理:才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知△ABC中,角A,B,C的对边分别是a,b,c,且2cos2 = sinB,a=3c.
(1)求角B的大小和tanC的值;
(2)若b=1,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】医院用甲、乙两种原料为手术后的病人配营养餐.甲种原料每10g含5单位蛋白质和10单位铁质,售价3元;乙种原料每10g含7单位蛋白质和4单位铁质,售价2元.若病人每餐至少需要35单位蛋白质和40单位铁质.试问:应如何使用甲、乙原料,才能既满足营养,又使费用最省.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列命题:
①在函数的图象中,相邻两个对称中心的距离为;②函数的图象关于点对称;③“ 且”是“”的必要不充分条件;④已知命题:对任意的,都有,则是:存在,使得;⑤在中,若, ,则角等于或.其中所有真命题的个数是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的方程为3x+4y﹣12=0,求直线l'的方程,使得:
(1)l'与l平行,且过点(﹣1,3);
(2)l'与l垂直,且l'与两轴围成的三角形面积为4.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动直线l:(m+3)x-(m+2)y+m=0与圆C:(x-3)2+(y-4)2=9.
(1)求证:无论m为何值,直线l总过定点A,并说明直线l与圆C总相交.
(2)m为何值时,直线l被圆C所截得的弦长最小?请求出该最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】是指大气中直径小于或等于微米的颗粒物,也称为可入肺颗粒物,对人体健康和大气环境质量的影响很大.我国标准采用世卫组织设定的最宽限值.即日均值在35微克/立方米以下空气质量为一级;在35微克/立方米75微克/立方米之间空气质量为二级;75微克/立方米以上空气质量为超标.
某市环保局从360天的市区监测数据中统计了1月至10月的每月的平均值(单位:微克/立方米),如下表所示.
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
月均值 | 32 | 28 | 25 | 31 | 34 | 33 | 45 | 44 | 63 | 68 |
(1)从5月到10月的这6个数据中任取2个数值,求这个2个数值均为二级的概率;
(2)求月均值关于月份的回归直线方程,其中.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com