精英家教网 > 高中数学 > 题目详情

【题目】某电子商务平台的管理员随机抽取了1000位上网购物者,并对其年龄(在10岁到69岁之间)进行了调查,统计情况如下表所示.

年龄

人数

100

150

200

50

已知三个年龄段的上网购物的人数依次构成递减的等比数列.

(1)求的值;

(2)若将年龄在内的上网购物者定义为“消费主力军”,其他年龄段内的上网购物者定义为“消费潜力军”.现采用分层抽样的方式从参与调查的1000位上网购物者中抽取5人,再从这5人中抽取2人,求这2人中至少有一人是消费潜力军的概率.

【答案】(1);(2)

【解析】

1)根据人数和为100及人数的等比关系列方程组求解即可;

2)在抽取的5人中,有3人是消费主力军,分别记为,有2人是消费潜力军,分别记为,利用列举法及古典概型的公式求解即可.

(1)由题意得,解得.

(2)由题意可知,在抽取的5人中,有3人是消费主力军,分别记为,有2人是消费潜力军,分别记为.记“这2人中至少有一人是消费潜力军”为事件.

从这5人中抽取2人所有可能情况为,共10种.

符合事件的有,共7种.

故所求概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个袋子中有个红球,个白球,若从中任取个球,则这个球中有白球的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为培养学生的阅读习惯,某校开展了为期一年的“弘扬传统文化,阅读经典名著”活动. 活动后,为了解阅读情况,学校统计了甲、乙两组各10名学生的阅读量(单位:本),统计结果用茎叶图记录如下,乙组记录中有一个数据模糊,无法确认,在图中以a表示.

(Ⅰ)若甲组阅读量的平均值大于乙组阅读量的平均值, 求图中a的所有可能取值;

(Ⅱ)将甲、乙两组中阅读量超过15本的学生称为“阅读达人”. 设,现从所有“阅读达人”里任取3人,求其中乙组的人数X的分布列和数学期望.

(Ⅲ)记甲组阅读量的方差为. 在甲组中增加一名学生A得到新的甲组,若A的阅读量为10,则记新甲组阅读量的方差为;若A的阅读量为20,则记新甲组阅读量的方差为,试比较的大小.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,底面为矩形,侧面为梯形,.

(Ⅰ)求证:

(Ⅱ)求证:平面

(Ⅲ)判断线段上是否存在点,使得平面平面?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017高考新课标Ⅲ19)如图,四面体ABCD中,ABC是正三角形,ACD是直角三角形,∠ABD=CBDAB=BD.

(1)证明:平面ACD⊥平面ABC

(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角DAEC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了组建一支业余足球队,在高一年级随机选取50名男生测量身高,发现被测男生的身高全部在之间,将测量结果按如下方式分成六组:第1,第2,第6,如图是按上述分组得到的频率分布直方图,以频率近似概率.

1)若学校要从中选1名男生担任足球队长,求被选取的男生恰好在第5组或第6组的概率;

2)试估计该校高一年级全体男生身高的平均数(同一组中的数据用该组区间的中点值代表)与中位数;

3)现在从第5与第6组男生中选取两名同学担任守门员,求选取的两人中最多有1名男生来自第5组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的平面内,若函数的图象与轴围成一个封闭的区域,将区域沿轴的正方向平移8个单位长度,得到几何体如图一,现有一个与之等高的圆柱如图二,其底面积与区域的面积相等,则此圆柱的体积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:函数在其定义域上是单调递增函数.

2)设,当时,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD为菱形,∠DAB60°PD⊥底面ABCDPDDC2EFG分别是ABPBCD的中点.

1)求证:ACPB

2)求证:GF∥平面PAD

3)求点G到平面PAB的距离.

查看答案和解析>>

同步练习册答案