精英家教网 > 高中数学 > 题目详情
已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),其中0<α<β<π.
(1)求证:
a
+
b
 与
a
-
b
互相垂直;
(2)若k
a
+
b
a
-k
b
的长度相等,求β-α的值(k为非零的常数).
分析:(1)根据已知中向量
a
b
的坐标,分别求出向量
a
+
b
a
-
b
的坐标,进而根据向量数量积公式及同角三角函数的平方关系,可证得
a
+
b
a
-
b
互相垂直;
(2)方法一:分别求出k
a
+
b
a
-k
b
的坐标,代入向量模的公式,求出k
a
+
b
a
-k
b
的模,进而可得cos(β-α)=0,结合已知中0<α<β<π,可得答案.
方法二:由|k
a
+
b
|=|
a
-k
b
|得:|k
a
+
b
|2=|
a
-k
b
|2,即(k
a
+
b
2=(
a
-k
b
2,展开后根据两角差的余弦公式,可得cos(β-α)=0,结合已知中0<α<β<π,可得答案.
解答:证明:(1)由题意得:
a
+
b
=(cosα+cosβ,sinα+sinβ)
a
-
b
=(cosα-cosβ,sinα-sinβ)
∴(
a
+
b
)•(
a
-
b
)=(cosα+cosβ)(cosα-cosβ)+(sinα+sinβ)(sinα-sinβ)
=cos2α-cos2β+sin2α-sin2β=1-1=0
a
+
b
 与
a
-
b
互相垂直.
解:(2)方法一:k
a
+
b
=(kcosα+cosβ,ksinα+sinβ),
a
-k
b
=(cosα-kcosβ,sinα-ksinβ)
|k
a
+
b
|=
k2+2kcos(β-α)+1
,|
a
-k
b
|=
k2-2kcos(β-α)+1

由题意,得4cos(β-α)=0,
因为0<α<β<π,
所以β-α=
π
2

方法二:由|k
a
+
b
|=|
a
-k
b
|得:|k
a
+
b
|2=|
a
-k
b
|2
即(k
a
+
b
2=(
a
-k
b
2,k2|
a
|2+2k
a
b
+|
b
|2=|
a
|2-2k
a
b
+k2|
b
|2
由于|
a
|=1,|
b
|=1
∴k2+2k
a
b
+1=1-2k
a
b
+k2,故
a
b
=0,
即(cosα,sinα)•(cosβ,sinβ)=0(10分)
即cosαcosβ+sinαsinβ=4cos (β-α)=0
因为0<α<β<π,
所以β-α=
π
2
点评:本题考查的知识点是数量积判断两个平面向量的垂直关系,平面向量数量积的坐标表示,模,夹角,熟练掌握平面向量数量积的坐标公式,是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义平面向量之间的一种运算“⊙”如下:对任意的向量a=(m,n),b=(p,q),令a⊙b=(m+p,n-q),已知a=(cosθ,3),b=(sinθ,3+
2
sinθ)
(θ∈R),点N(x,y)满足
ON
=a⊙b(其中O为坐标原点),则|
ON
|2
的最大值为(  )
A、
2
B、2+
2
C、2-
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),其中0<α<β<π.
(1)求证:
a
+
b
a
-
b
互相垂直;
(2)若k
a
+
b
与k
a
-
b
大小相等,求β-α(k≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ).
(1)若α-β=
6
,求
a
b
的值;
(2)若
a
b
=
4
5
,α=
π
8
,且α-β∈(-
π
2
,0)
,求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•朝阳区一模)已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),0<α<β<π
(Ⅰ)求|
a
|的值;
(Ⅱ)求证:
a
+
b
a
-
b
互相垂直;
(Ⅲ)设|
a
+
b
|=|
a
-
b
|,求β-α的值.

查看答案和解析>>

同步练习册答案