精英家教网 > 高中数学 > 题目详情
(本小题满分13分)
已知椭圆(a>b>0)的焦距为4,且与椭圆有相同的离心率,斜
率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.
解:(1)∵焦距为4,∴c=2………………………………………………1分
又∵的离心率为……………………………… 2分
,∴a=,b=2………………………… 4分
∴标准方程为………………………………………6分
(2)设直线l方程:y=kx+1,A(x1,y1),B(x2,y2),
……………………7分
∴x1+x2=,x1x2=
由(1)知右焦点F坐标为(2,0),
∵右焦点F在圆内部,∴<0………………………………8分
∴(x1 -2)(x2-2)+ y1y2<0
即x1x2-2(x1+x2)+4+k2 x1x2+k(x1+x2)+1<0…………………… 9分
<0…………… 11分
∴k<……………………………………………………………… 12分
经检验得k<时,直线l与椭圆相交,
∴直线l的斜率k的范围为(-∞,)……………………………13
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

椭圆短轴是2,长轴是短轴的2倍,则椭圆中心到其准线的距离为
A        B       C       D

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

点P(-3,1)在椭圆的左准线上,过点P斜率为的光线,
经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1是椭圆(a>b>0)的一个焦点,PQ是经过另一个焦点F2的弦,则△PF1Q的周长是(  )
A.4aB.4bC.2aD.2b

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆上的动点Q,过动点Q作椭圆的切线l,过右焦点作l的垂线,垂足为P,则点P的轨迹方程为(  )
A.x2+y2=a2B.x2+y2=b2
C.x2+y2=c2D.x2+y2=e2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分) 如图,设椭圆的右顶点与上顶点分别
为A、B,以A为圆心,OA为半径的圆与以B为圆心,OB为半径的圆相交于点O、P.

(1)求点P的坐标;
(2) 若点P在直线上,求椭圆的离心率;
(3) 在(2)的条件下,设M是椭圆上的一动点,且点N(0,1)到椭圆上点的最近距离为3,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆中心的直线与椭圆交于A、B两点,右焦点为F2,则△ABF2
 
的最大面积是(   )                                                                                                   
A.                         B.                         C.                  D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,用与底面成30°角的平面截圆柱得一椭圆截线,则该椭圆的离心率为  (     )
  
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的离心率,则的取值范围是                          (   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案