精英家教网 > 高中数学 > 题目详情
11.椭圆$\frac{x^2}{16}+\frac{y^2}{9}=1$的焦点坐标为(  )
A.(0,5)和(0,-5)B.($\sqrt{7}$,0)和(-$\sqrt{7}$,0)C.(0,$\sqrt{7}$)和(0,-$\sqrt{7}$)D.(5,0)和(-5,0)

分析 直接利用椭圆方程求出长轴、短轴的长,然后求解焦距即可.

解答 解:由题意得,a2=16,b2=9,
∴c2=a2-b2=16-9=7,
∴c=$\sqrt{7}$,
∴椭圆的焦点为($\sqrt{7}$,0)和(-$\sqrt{7}$,0).
故选:B.

点评 本题考查椭圆的标准方程,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知曲线 f(x)=$\frac{1}{2}$x2-3上一点P (1,-$\frac{5}{2}$),则点P处的切线方程为2x-2y-7=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.用反证法证明命题:“设实数a、b、c满足a+b+c=1,则a、b、c中至少有一个数不小于$\frac{1}{3}$”时,第一步应写:假设a、b、c都小于$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数y=loga(-x2-ax-1),(a>0且a≠1)有最大值,则实数a的取值范围是a>2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设Sn是公差不为零的等差数列{an}的前n项和,且a1>0,若S5=S9,则当Sn最大时,n=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.10件产品中有3件次品,从中任取4件,求至少有一件次品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.营养学家指出,高中学生良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪.1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费35元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费28元.为了满足营养专家指出的 日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知复数z满足z(1-2i)=i,则复数对应的点在复平面对应的点位于  (  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知底面为边长为2的正方形,侧棱长为1的直四棱柱ABCD-A1B1C1D1中,P,Q是面A1B1C1D1上的两个不同的动点.给出以下四个结论:
①若DP=$\sqrt{3}$,则DP在该四棱柱六个面上的投影长度之和的最大值为6$\sqrt{2}$;
②若P在面对角线A1C1上,则在棱DD1上存在一点M使得MB1⊥BP;
③若P,Q均在面对角线A1C1上,且PQ=1,则四面体BDPQ的体积一定是定值;
④若P,Q均在面对角线A1C1上,则四面体BDPQ在底面ABCD-A1B1C1D1上的投影恒为凸四边形的充要条件是PQ>$\sqrt{2}$;
以上各结论中,正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案