精英家教网 > 高中数学 > 题目详情
9.若角α的终边经过点(-4,3),则tanα=(  )
A.$\frac{4}{3}$B.$-\frac{4}{3}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

分析 由题设条件,根据三角函数终边上一点的定义即可求得正切值,正切值为纵坐标与横坐标的商.

解答 解:由定义若角α的终边经过点(-4,3),∴tanα=-$\frac{3}{4}$,
故选:D.

点评 本题考查任意角三角函数的定义,求解的关键是熟练掌握定义中知道了终边上一点的坐标,求正切值的规律.知道了终边上一点的坐标的三角函数的定义用途较广泛,应好好掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.一个几何体的三视图如图,则该几何体的体积为(  )
A.2B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x+2|+|x-4|.
(1)求函数f(x)的最小值;
(2)若{x|f(x)≤t2-t}∩{x|-3≤x≤5}≠∅.求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知底面边长为$2\sqrt{3}$的正三棱锥O-ABC的体积为$\sqrt{3}$,且A,B,C在球O上,则球的体积是(  )
A.$\frac{{20\sqrt{5}π}}{3}$B.C.20πD.$4\sqrt{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知各项都不相等的数列{an}满足n≥2,$a_n^2+a_{n-1}^2-2{a_n}{a_{n-1}}-{a_n}+{a_{n-1}}=0$,a1=3.
(1)求数列的通项公式an
(2)若${b_n}=\frac{1}{{n{a_n}}}$,求数列{bn}的前n项和Sn
(3)证明:${S_n}≥\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设向量$\overrightarrow{a}$,$\overrightarrow{b}$的模分别为2和3,且夹角为60°,则|$\overrightarrow{a}$+$\overrightarrow{b}$|等于(  )
A.$\sqrt{13}$B.13C.$\sqrt{19}$D.19

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知φ∈(0,π),且$tan(φ+\frac{π}{4})=-\frac{1}{3}$.
(Ⅰ)求tan2φ的值;
(Ⅱ)求$\frac{sinφ+cosφ}{2cosφ-sinφ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=2tan(ωx+ϕ)$({ω>0,|ϕ|<\frac{π}{2}})$的最小正周期为$\frac{π}{2}$,且$f({\frac{π}{2}})=-2$,则ω=2,ϕ=-$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.给定矩阵A=$[\begin{array}{l}{1}&{2}\\{2}&{3}\end{array}]$,B=$[\begin{array}{l}{-\frac{3}{2}}&{2}\\{1}&{-1}\end{array}]$,设椭圆$\frac{{x}^{2}}{4}$+y2=1在矩阵AB对应的变换下得到曲线F,求F的面积.

查看答案和解析>>

同步练习册答案