精英家教网 > 高中数学 > 题目详情

【题目】如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求点在上,点在上,且对角线点,已知米,米.

(1)要使矩形的面积大于平方米,则的长应在什么范围内?

(2)当的长度是多少时,矩形花坛的面积最小?并求出最小值.

【答案】12)当且仅当时,矩形花坛的面积最小为24平方米

【解析】

AN的长为x(x>2),根据,可求出|AM|

所以SAMPN|AN||AM|.

根据SAMPN> 32,解关于x的不等式即可.

从函数的角度求最值,可以求导,也可以变换成对号函数的形式利用均值不等式求最值

:AN的长为x米(x >2),∴|AM|

∴SAMPN|AN||AM|

1)由SAMPN> 32 > 32

∵x >2,即(3x8)(x8> 0

,即AN长的取值范围是……5

2

当且仅当y取得最小值.

SAMPN取得最小值24(平方米) ……………………10

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ln23x﹣2a(x+3ln3x)+10a2 , 若存在x0使得 成立,则实数a的值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱锥D﹣ABC侧棱两两垂直,E为棱AD中点,平面α过点A,且α∥平面EBC,α∩平面ABC=m,α∩平面ACD=n,则m,n所成角的余弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1,其前n项和为Sn,且Snan+1 (n∈N*).

(1)求anSn

(2)设bn=log2(2Sn+1)-2,数列{cn}满足cn·bn+3·bn+4=1+(n+1)(n+2)·2bn,数列{cn}的前n项和为Tn,求使4Tn>2n+1成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px(p>0)的准线为l,若l与圆x2+y2+6x+5=0的交点为A,B,且|AB|=2 .则p的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 如图,在四棱锥P﹣ABCD中,侧面PAD底面ABCD,侧棱PA=PD= ,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.

(1) 求直线PB与平面POC所成角的余弦值;

(2)线段上是否存在一点,使得二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,离心率为. 点为圆上任意一点, 为坐标原点.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)记线段与椭圆交点为,求的取值范围;

(Ⅲ)设直线经过点且与椭圆相切, 与圆相交于另一点,点关于原点的对称点为,试判断直线与椭圆的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为 ,服用B有效的概率为
(Ⅰ)求一个试验组为甲类组的概率;
(Ⅱ)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式 >x的解集为(﹣∞,m).
(Ⅰ)求实数m的值;
(Ⅱ)若关于x的方程|x﹣n|+|x+ |=m(n>0)有解,求实数n的值.

查看答案和解析>>

同步练习册答案