精英家教网 > 高中数学 > 题目详情
设全集U=R,集合M={y|y=x2+2,x∈U},集合N={y|y=10-3x,x∈M},则M∪N等于(  )
A、{1,3,2,6}
B、{x|2≤x≤4}
C、R
D、∅
考点:并集及其运算
专题:集合
分析:利用并集的性质求解.
解答: 解:∵全集U=R,集合M={y|y=x2+2,x∈U}={y|y≥2},
集合N={y|y=10-3x,x∈M}={y|y≤4},
∴M∪N=R.
故选:C.
点评:本题考查并集的求法,是基础题,解题时要认真审题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,下列等式不成立的是(  )
A、c=
a2+b2-2abcosC
B、
a
sinA
=
b
sinB
C、asinC=csinA
D、cosB=
a2+c2-b2
2abc

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=(a+i)2,ω=4-3i其中a是实数,
(1)若在复平面内表示复数z的点位于第一象限,求a的范围;
(2)若
z
ω
是纯虚数,a是正实数,①求a,②求
z
ω
+(
z
ω
2+(
z
ω
3+…+(
z
ω
8

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z=-2-i(i为虚数单位),x的共轭复数为
.
z
,则
z+2
.
z
+2
等于(  )
A、1B、-1C、iD、-i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x+1)=x2-2x+3,则f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD中底面ABCD是菱形,PA=PC,AC与BD交于点O.
(1)求证:PB⊥AC;
(2)若平面PAC⊥平面ABCD,∠ABC=60°,PB=AB=2,求点O到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x+
1
3x

(1)判断函数f(x)的奇偶性;
(2)利用函数单调性的定义证明f(x)在(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=Ax2+Bx(A≠0),f(1)=3,其图象关于x=-1对称,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*均在y=f(x)图象上.
(Ⅰ)求数列{an}的通项公式,并求Sn的最小值;
(Ⅱ)数列{bn},bn=
1
Sn
,{bn}的前n项和为 Tn,求证:
1
3
-
1
4n
<Tn
3
4
-
1
n+3

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),直线L的倾斜角为60°,直线L过C的右焦点F2,且与C相交于A,B两点(A,B可互换),若
AF2
F2B
,则λ的取值范围是
 

查看答案和解析>>

同步练习册答案