精英家教网 > 高中数学 > 题目详情
5.如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,∠BAD=90°,AD∥BC,PA=AB=BC=1,AD=2,E为PD的中点.
(1)求证:CD⊥平面PAC;
(2)求直线EC与平面PAC所成角的正切值.

分析 (1)连接AC,推导出DC⊥PA,DC⊥AC,由此能证明CD⊥平面PAC.
(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出直线EC与平面PAC所成角的正切值.

解答 证明:(1)连接AC,∵PA⊥平面ABCD,
∴PA⊥DC,即DC⊥PA,
过C作CC′⊥AD,交AD于C′,
则CC′=1,C′D=1,∴CD=2,
又AC=2,∴AC2+CD2=2+2=AD2
∴DC⊥AC,
∵AC∩PA=A;
∴CD⊥平面PAC.
解:(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,
C(1,1,0),E(0,1,$\frac{1}{2}$),P(0,0,1),A(0,0,0),D(0,2,0),
$\overrightarrow{CD}$=(-1,1,0),$\overrightarrow{EC}$=(1,0,-$\frac{1}{2}$),
∵CD⊥平面PAC,∴平面PAC的一个法向量$\overrightarrow{CD}$=(-1,1,0),
设直线EC与平面PAC所成角为θ,
则sinθ=$\frac{|\overrightarrow{CD}•\overrightarrow{EC}|}{|\overrightarrow{CD}|•|\overrightarrow{EC}|}$=$\frac{|-1|}{\sqrt{2}•\sqrt{\frac{5}{4}}}$=$\frac{\sqrt{10}}{5}$,cosθ=$\sqrt{1-\frac{10}{25}}$=$\frac{\sqrt{15}}{5}$,
tanθ=$\frac{\sqrt{10}}{\sqrt{15}}$=$\frac{\sqrt{6}}{3}$,
∴直线EC与平面PAC所成角的正切值为$\frac{\sqrt{6}}{3}$.

点评 本题考查线面垂直的证明,考查线面角的正切值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.直线x-y-1=0的倾斜角与其在y轴上的截距分别是(  )
A.135°,1B.45°,-1C.45°,1D.135°,-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)在(-∞,+∞)上有意义,对于对定的正数k,定义函数fk(x)=$\left\{\begin{array}{l}{f(x),f(x)<k}\\{k,f(x)≥k}\end{array}\right.$取k=$\frac{1}{2}$,f(x)=($\frac{1}{2}$)|x|,则fk(x)=$\frac{k}{2}$的零点有(  )
A.0个B.1个
C.2个D.不确定,随k的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=Asin(ωx+φ)+B,(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图,则(  )
A.A=4B.ω=1C.φ=$\frac{π}{6}$D.B=4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设x,y∈R,下列不等式成立的是(  )
A.1+|x+y|+|xy|≥|x|+|y|B.1+2|x+y|≥|x|+|y|C.1+2|xy|≥|x|+|y|D.|x+y|+2|xy|≥|x|+|y|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现处足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.2016年8月某日某省x个监测点数据统计如下:
空气污染指数
(单位:μg/m3
[0,50](50,100](100,150](150,200]
监测点个数1540y10
(Ⅰ)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;
(Ⅱ)在空气污染指数分别为50~100和150~200的监测点中,用分层抽样的方法抽取10个监测点,从中任意选取4个监测点,求这4个监测点中空气质量为良的个数ξ的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sin2x+sin(2x-$\frac{π}{3}$).
(1)求f(x)的最小正周期;
(2)将f(x)的图象沿x轴向左平移m(m>0)个单位,所得函数g(x)的图象关于直线x=$\frac{π}{8}$对称,求m的最小值及m最小时g(x)在$[0,\frac{π}{4}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点M(-2,2)在抛物线C:y2=2px(p>0)的准线上,记抛物线C的焦点为F,则直线MF的方程为(  )
A.x-2y+6=0B.x+2y-2=0C.2x-y+6=0D.2x+y+2=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点A的坐标为(4,2),F是抛物线y2=2x的焦点,点M是抛物线上的动点,当|MF|+|MA|取得最小值时,点M的坐标为(2,2).

查看答案和解析>>

同步练习册答案