精英家教网 > 高中数学 > 题目详情

【题目】求解下列各题.

(1)已知,且为第一象限角,求,;

(2)已知,且为第三象限角,求,;

(3)已知,且为第四象限角,求,;

(4)已知,且为第二象限角,求,.

【答案】(1),.(2),.(3),.(4),.

【解析】

1)由为第一象限角,利用平方关系求得,再利用商数关系求.

2)由为第三象限角, 利用平方关系求得,再利用商数关系求.

3 看成两个未知数,列出关于的两个独立的关系式,通过解方程组,就可以求出.

4 为第一象限角,利用平方关系求得,再利用商数关系求.

1)因为为第一象限角,

所以.

2)因为为第三象限角,

所以.

3)由题意有

由②得,③

将③代入①整理得,即.

因为是第四象限角,所以.

4)因为为第二象限角,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值.

(1)求常数k的值;

(2)求函数的单调区间与极值;

(3)设,且 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面,底面是直角梯形,.

(Ⅰ)求证:平面平面

(Ⅱ)在棱上是否存在一点,使//平面?若存在,请确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过椭圆的右焦点,抛物线的焦点为椭圆的上顶点,且交椭圆两点,点在直线上的射影依次为.

(1)求椭圆的方程;

(2)若直线轴于点,且,当变化时,证明: 为定值;

(3)当变化时,直线是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A(1)五人站一排,必须站右边,则不同的排法有多少种;

(2)晚会原定的5个节目已排成节目单,开演前又加了2个节目,若将这2 个节目插入原节目单中,则不同的插法有多少种.

B.有四个编有1、2、3、4的四个不同的盒子,有编有1、2、3、4的四个不同的小球,现把小球放入盒子里.

①小球全部放入盒子中有多少种不同的放法;

②恰有一个盒子没放球有多少种不同的放法;

③恰有两个盒子没放球有多少种不同的放法.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是边长为的菱形, 平面 平面 .

(Ⅰ)求证:

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列的前n项和满足

1)求数列的通项公式;

2)若nN*),求数列的前n项和;

3)是否存在实数使得恒成立,若存在,求实数的取值范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间租赁甲、乙两种设备生产AB两类产品,甲种设备每天能生产A类产品8件和B类产品15件,乙种设备每天能生产A类产品10件和B类产品25件,已知设备甲每天的租赁费300元,设备乙每天的租赁费400元,现车间至少要生产A类产品100件,B类产品200件,所需租赁费最少为__

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C1-=1

1)若点M3t)在双曲线C1上,求M点到双曲线C1右焦点的距离;

2)求与双曲线C1有共同渐近线,且过点(-32)的双曲线C2的标准方程.

查看答案和解析>>

同步练习册答案