【题目】求解下列各题.
(1)已知,且为第一象限角,求,;
(2)已知,且为第三象限角,求,;
(3)已知,且为第四象限角,求,;
(4)已知,且为第二象限角,求,.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,底面,,底面是直角梯形,.
(Ⅰ)求证:平面平面;
(Ⅱ)在棱上是否存在一点,使//平面?若存在,请确定点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线过椭圆的右焦点,抛物线的焦点为椭圆的上顶点,且交椭圆于两点,点在直线上的射影依次为.
(1)求椭圆的方程;
(2)若直线交轴于点,且,当变化时,证明: 为定值;
(3)当变化时,直线与是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A(1)五人站一排,必须站右边,则不同的排法有多少种;
(2)晚会原定的5个节目已排成节目单,开演前又加了2个节目,若将这2 个节目插入原节目单中,则不同的插法有多少种.
B.有四个编有1、2、3、4的四个不同的盒子,有编有1、2、3、4的四个不同的小球,现把小球放入盒子里.
①小球全部放入盒子中有多少种不同的放法;
②恰有一个盒子没放球有多少种不同的放法;
③恰有两个盒子没放球有多少种不同的放法.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列的前n项和满足
(1)求数列的通项公式;
(2)若(n∈N*),求数列的前n项和;
(3)是否存在实数使得对恒成立,若存在,求实数的取值范围,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某车间租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品8件和B类产品15件,乙种设备每天能生产A类产品10件和B类产品25件,已知设备甲每天的租赁费300元,设备乙每天的租赁费400元,现车间至少要生产A类产品100件,B类产品200件,所需租赁费最少为__元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线C1:-=1.
(1)若点M(3,t)在双曲线C1上,求M点到双曲线C1右焦点的距离;
(2)求与双曲线C1有共同渐近线,且过点(-3,2)的双曲线C2的标准方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com