精英家教网 > 高中数学 > 题目详情

【题目】已知P,A,B,C是半径为2的球面上的点,PA=PB=PC=2,,点BAC上的射影为D,则三棱锥体积的最大值为( )

A.B.C.D.

【答案】D

【解析】

先画出图形(见解析),求出三棱锥的高,由题意得出三棱锥体积最大时面积最大,进而求出的面积表达式,利用函数知识求出面积最大值,从而求出三棱锥体积最大值.

如下图,由题意,

的中点为,则为三角形的外心,且为在平面上的射影,所以球心在的延长线上,设,则

所以,即,所以.

,设(),则,

,则,故

所以,则

所以的面积

,则

因为,所以当时,,即此时单调递增;当时,,此时单调递减.

所以当时,取到最大值为,即的面积最大值为

的面积最大时,三棱锥体积取得最大值为.

故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若无穷数列满足:,且对任意(skl)都有,则称数列为“T”数列.

1)证明:正项无穷等差数列是“T”数列;

2)记正项等比数列的前n项之和为,若数列是“T”数列,求数列公比的取值范围;

3)若数列是“T”数列,且数列的前n项之和满足,求证:数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20名学生某次数学考试成绩(单位:分)的频率分布直方图如下:

(1)求频率直方图中a的值;

(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;

(3)从成绩在[50,70)的学生中人选2人,求这2人的成绩都在[60,70)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,长为3的线段的两端点分别在轴、轴上滑动,点为线段上的点,且满足.记点的轨迹为曲线.

1)求曲线的方程;

2)若点为曲线上的两个动点,记,判断是否存在常数使得点到直线的距离为定值?若存在,求出常数的值和这个定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴为非负半轴建立极坐标系,直线的极坐标方程为.

1)求直线的直角坐标方程和曲线的普通方程;

2)求直线与曲线交于两点,线段的中点的横坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如下表:

从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:

(1)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品”的规定?

(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;

(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆的离心率为,过椭圆右焦点作两条互相垂直的弦.当直线斜率为0时,

1)求椭圆的方程;

2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆中心在坐标原点,焦点在轴上,且过点,直线与椭圆交于两点(两点不是左右顶点),若直线的斜率为时,弦的中点在直线.

1)求椭圆的方程;

2)若在椭圆上有相异的两点三点不共线),为坐标原点,且直线,直线,直线的斜率满足,求证:是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要制作一个如图的框架(单位:米).要求所围成的总面积为19.5(),其中是一个矩形, 是一个等腰梯形,梯形高,设米, 米.

(1)求关于的表达式;

(2)如何设计的长度,才能使所用材料最少?

查看答案和解析>>

同步练习册答案