精英家教网 > 高中数学 > 题目详情
以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线的极坐标方程为θ=
π
4
(ρ∈R)
,它与曲线
x=1+2cosα
y=2+2sinα
(α为参数)相交于两点A和B,则|AB|=
 
分析:先利用直角坐标与极坐标间的关系,将极坐标方程为化成直角坐标方程,再将曲线C的参数方程化成普通方程,最后利用直角坐标方程的形式,利用垂径定理及勾股定理,由圆的半径r及圆心到直线的距离d,即可求出|AB|的长.
解答:解:∵ρ=
π
4

利用ρcosθ=x,ρsinθ=y,进行化简
∴x-y=0
x=1+2cosα(α为参数)
y=2+2sinα
相消去α可得
圆的方程(x-1)2+(y-2)2=4得到圆心(1,2),半径r=2,
所以圆心(1,2)到直线的距离d=
2
2
=
2

所以|AB|=2
r2-d2
=
14

∴线段AB的长为
14

故答案为:
14
点评:本小题主要考查圆的参数方程和直线的极坐标方程与直角坐标方程的互化,以及利用圆的几何性质计算圆心到直线的距等基本方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以直角坐标系的原点为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线l的极坐标方程为ρsin(θ-
π
3
)=6
,圆C的参数方程为
x=10cosθ
y=10sinθ
,(θ为参数),求直线l被圆C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知圆C的参数方程为
x=2cosα
y=2sinα
(α为参数),直线l的极坐标方程为ρsin(θ+
π
4
)=
2
,则直线l被圆C所截的弦长为
2
2
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

以直角坐标系的原点为极点,x轴的非负半轴为极轴,并在两种坐标系中取相同的长度单位,点M的极坐标是(4,
3
)
,则点M直角坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-4:坐标与参数方程) 
以直角坐标系的原点为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位.
已知直线ι的极坐标方程为ρsin(θ-
π
3
)=6
,圆C的参数方程为
x=10cos θ
y=10sin θ
(θ为参数),求直线ι被圆C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(注意:本小题为选做题,A,B两题选做其中一题,若都做了,则按A题答案给分)
A.当x,y满足条件|x-1|+|y+1|<1时,变量u=
x-1
y-2
的取值范围是
-
1
3
<u<
1
3
-
1
3
<u<
1
3

B.以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线的极坐标方程为θ=
π
4
(ρ∈R),它与曲线
x=1+2cosα
y=2+2sinα
(α为参数)相交于A,B两点,则以线段AB为直径的圆的面积为
2
2

查看答案和解析>>

同步练习册答案