精英家教网 > 高中数学 > 题目详情

【题目】某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第年与年销量 (单位:万件)之间的关系如表:

(Ⅰ)在图中画出表中数据的散点图;

(Ⅱ)根据(Ⅰ)中的散点图拟合的回归模型,并用相关系数甲乙说明;

(Ⅲ)建立关于的回归方程,预测第5年的销售量约为多少?.

附注:参考数据: .

参考公式:相关系数

回归方程中斜率和截距的最小二乘法估计公式分别为:

.

【答案】(Ⅰ)散点图见解析;(Ⅱ)答案见解析;(Ⅲ) 71万件.

【解析】试题分析:

(Ⅰ) 根据所给数据易得散点图;

(Ⅱ) 利用所提供的数据与公式求出的相关系数r,即可得出结论;

(Ⅲ) 由题中所提供的数据,分别求出的值,则可得回归直线方程,再将代入回归直线方程可得结论.

试题解析:

(Ⅰ)作出散点图如图:

(Ⅱ)由(Ⅰ)散点图可知,各点大致分布在一条直线附近,由题中所给表格及参考数据得:

.

的相关系数近似为0.9996,说明的线性相关程度相当大,

∴可以用线性回归模型拟合的关系.

(Ⅲ)由(Ⅱ)知:

关于的回归直线方程为

时,

所以第5年的销售量约为71万件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1=1, (n∈N+).
(1)证明:数列 是等差数列;
(2)求数列{an}的通项公式an
(3)设bn=n(n+1)an , 求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(13分)如图,椭圆经过点,离心率,直线l的方程为

1)求椭圆C的方程;

2是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为.问:是否存在常数,使得? 若存在,求的值; 若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过点P(﹣2,5),且斜率为﹣
(1)求直线l的方程;
(2)若直线m与l平行,且点P到直线m的距离为3,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某经销商从外地水产养殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如下图:

(1)记事件为:“从这批小龙虾中任取一只,重量不超过35的小龙虾”,求的估计值;

(2)若购进这批小龙虾100千克,试估计这批小龙虾的数量;

(3)为适应市场需求,了解这批小龙虾的口感,该经销商将这40只小龙虾分成三个等级,如下表:

等级

一等品

二等品

三等品

重量(

按分层抽样抽取10只,再随机抽取3只品尝,记为抽到二等品的数量,求抽到二级品的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数y=f(x),若在其定义域内存在x0 , 使得x0f(x0)=1成立,则称x0为函数f(x)的“反比点”.下列函数中具有“反比点”的是
①f(x)=﹣2x+2; ②f(x)=sinx,x∈[0,2π];
③f(x)=x+ , x∈(0,+∞);④f(x)=ex; ⑤f(x)=﹣2lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sin(2x﹣ )图象向左平移 个单位,所得函数图象的一条对称轴的方程是(
A.x=
B.x=
C.x=
D.x=﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场拟对某商品进行促销,现有两种方案供选择,每种促销方案都需分两个月实施,且每种方案中第一个月与第二个月的销售相互独立.根据以往促销的统计数据,若实施方案1,预计第一个月的销量是促销前的1.2倍和1.5倍的概率分别是0.6和0.4,第二个月的销量是第一个月的1.4倍和1.6倍的概率都是0.5;若实施方案2,预计第一个月的销量是促销前的1.4倍和1.5倍的概率分别是0.7和0.3,第二个月的销量是第一个月的1.2倍和1.6倍的概率分别是0.6和0.4.令表示实施方案的第二个月的销量是促销前销量的倍数.

(Ⅰ)求 的分布列;

(Ⅱ)不管实施哪种方案, 与第二个月的利润之间的关系如下表,试比较哪种方案第二个月的利润更大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省高考改革新方案,不分文理科,高考成绩实行“”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体,从学生群体中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如下表:

(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;

(II)从所调查的50名学生中任选2名,记表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量的分布列和数学期望;

(III)将频率视为概率,现从学生群体中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作,求事件“”的概率.

查看答案和解析>>

同步练习册答案