精英家教网 > 高中数学 > 题目详情
如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为       .

试题分析:由三视图知,几何体是一个四棱锥,四棱锥的底面是一个正方形,边长是2,四棱锥的一条侧棱和底面垂直,且这条侧棱长是2,这样在所有的棱中,连接与底面垂直的侧棱的顶点与相对的底面的顶点的侧棱是最长的长度是
点评:本题考查由三视图还原几何体,所给的是一个典型的四棱锥,注意观察三视图,看出四棱锥的一条侧棱与底面垂直.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分10分) 在长方体中,分别是的中点,
.
(Ⅰ)求证://平面
(Ⅱ)在线段上是否存在点,使直线垂直,
如果存在,求线段的长,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直四棱柱中,底面是直角梯形,

(1)求证:是二面角的平面角;
(2)在上是否存一点,使得与平面与平面都平行?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,在三棱锥中,
底面,点
分别在棱上,且
(Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成的角的正弦;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,AB∥CD,BA⊥AD,且CD=2AB.

(1)若AB=AD=,直线PB与CD所成角为
①求四棱锥P-ABCD的体积;
②求二面角P-CD-B的大小;
(2)若E为线段PC上一点,试确定E点的位置,使得平面EBD垂直于平面ABCD,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分) 如图,四边形中,为正三角形,交于点.将沿边折起,使点至点,已知与平面所成的角为,且点在平面内的射影落在内.

(Ⅰ)求证:平面
(Ⅱ)若已知二面角的余弦值为,求的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若三棱锥的一条棱长为,其余棱长均为1,体积是,则函数在其定义域上为(   )
A.增函数且有最大值B.增函数且没有最大值
C.不是增函数且有最大值D.不是增函数且没有最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正六棱柱的底面边长和侧棱长相等,体积为,其三视图中的俯视图如图所示,则其侧(左)视图的面积是( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间直角坐标系中的形状是(   )
正三角形   等腰三角形   直角三角形   其他类型

查看答案和解析>>

同步练习册答案