精英家教网 > 高中数学 > 题目详情
19.已知向量$\overrightarrow a$,$\overrightarrow b$,若|${\left.{\overrightarrow a}\right.$|=3,|${\left.{\overrightarrow b}\right.$|=4,且$\overrightarrow a$与$\overrightarrow b$的夹角为120°.求:
(1)$\overrightarrow a$•$\overrightarrow b$;
(2)($\overrightarrow b$-2$\overrightarrow a$)•($\overrightarrow a$+2$\overrightarrow b$).

分析 (1)根据向量数量积的公式进行求解即可.
(2)根据向量数量积的四则运算法则进行化简求解即可.

解答 解:(1)∵|${\left.{\overrightarrow a}\right.$|=3,|${\left.{\overrightarrow b}\right.$|=4,且$\overrightarrow a$与$\overrightarrow b$的夹角为120°,
∴$\overrightarrow a$•$\overrightarrow b$=|$\overrightarrow a$|•|$\overrightarrow b$|cos120°=3×4cos120°=12×(-$\frac{1}{2}$)=6;
(2)($\overrightarrow b$-2$\overrightarrow a$)•($\overrightarrow a$+2$\overrightarrow b$)=-2|$\overrightarrow a$|2+2|$\overrightarrow b$|2-3$\overrightarrow a$•$\overrightarrow b$=-2×9+2×16-3×(-6)=-18+32+18=32;.

点评 本题主要考查向量数量积的计算以及向量数量积的四则运算,根据相应的公式是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.由“三角形的面积等于$\frac{1}{2}$×底×高”,想到“三棱锥的体积为$\frac{1}{3}$×底面积×高”,用的是(  )
A.归纳推理B.演绎推理C.类比推理D.特殊推理

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.对任意非零向量:$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$.则(  )
A.($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$)B.$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,则$\overrightarrow{b}$=$\overrightarrow{c}$
C.|$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|D.若|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则$\overrightarrow{a}$•$\overrightarrow{b}$=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.有3个男生和3个女生.
(1)若6人站成一排,求男生甲必须站在两端的排法数;
(2)若6人站成前后两排,每排3人,求前排恰有一位女生的排法数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,在菱形ABCD中,E、F、G、H分别为四边的中点,从图形中的所有平行四边形中任取一个,取到的恰好是菱形的概率是(  )
A.$\frac{1}{2}$B.$\frac{5}{8}$C.$\frac{4}{9}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是用相同规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第20个图案中需用黑色瓷砖块数为(  )
A.148B.126C.102D.88

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.车厢内有6个座位,4个人上车,共有360种不同的坐法.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,⊙C经过二次函数f(x)=$\frac{\sqrt{3}}{3}$(x2+2x-3)与两坐标轴的三个交点.
(1)求⊙C的标准方程;
(2)设点A(-2,0),点B(2,0),试探究⊙C上是否存在点P满足PA=$\sqrt{2}$PB,若存在,求出点P的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在正方体A1B1C1D1-ABCD中.O为面ABCD的中心.
(1)求证:AC1⊥平面B1CD1
(2)求二面角C-B1D1-C1的大小.

查看答案和解析>>

同步练习册答案