【题目】已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2﹣x
(1)求f(x)的解析式;
(2)画出f(x)的图象;
(3)若方程f(x)=k有4个解,求k的范围.
科目:高中数学 来源: 题型:
【题目】已知函数, , 为实数, , 为自然对数的底数, .
(1)当, 时,设函数的最小值为,求的最大值;
(2)若关于的方程在区间上有两个不同实数解,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,已知|AB|=4 ,且三内角A,B,C满足2sin A+sin C=2sin B,建立适当的坐标系,求顶点C的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱 中,侧面和侧面都是矩形, 是边长为的正三角形, 分别为的中点.
(1)求证: 平面;
(2)求证:平面平面.
(3)若平面,求棱的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= .
(1)判断函数f(x)的奇偶性;
(2)判断并证明f(x)的单调性;
(3)求关于x的不等式f(2x﹣1)+f(x+3)>0的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线的顶点是原点,以轴为对称轴,且经过点.
(Ⅰ)求抛物线的方程;
(Ⅱ)设点, 在抛物线上,直线, 分别与轴交于点, , .求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生在假期进行某种小商品的推销,他利用所学知识进行了市场调查,发现这种商品当天的市场价格与他的进货量(件)加上20成反比.已知这种商品每件进价为2元.他进100件这种商品时,当天卖完,利润为100元.若每天的商品都能卖完,求这个学生一天的最大利润是多少?获得最大利润时每天的进货量是多少件?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(α)= .
(1)若α为第二象限角且f(α)=﹣ ,求 的值;
(2)若5f(α)=4f(3α+2β).试问tan(2α+β)tan(α+β)是否为定值(其中α≠kπ+ ,α+β≠kπ+ ,2α+β≠kπ+ ,3α+2β≠kπ+ ,k∈Z)?若是,请求出定值;否则,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com