精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆: 的长轴长为4,左、右顶点分别为,经过点的直线与椭圆相交于不同的两点(不与点重合).

(Ⅰ)当,且直线 轴时, 求四边形的面积;

(Ⅱ)设,直线与直线相交于点,求证:三点共线.

【答案】(Ⅰ)4;(Ⅱ)见解析

【解析】

(Ⅰ)根据条件得,再根据方程得,进而解得坐标,最后根据四边形形状求面积,(Ⅱ)先考虑特殊情形:直线的斜率不存在,具体求出坐标,即得结果,再考虑直线的斜率存在情况,设,再用坐标表示,以及,最后利用直线方程与椭圆方程联立方程组,结合韦达定理代入化简得.

(Ⅰ)由题意,得 解得. 所以椭圆方程为.

,及直线 轴时,易得,. ,.

所以,显然此时四边形为菱形,所以四边形的面积为.

(Ⅱ)当直线的斜率不存在时,由题意,得的方程为

代入椭圆的方程,得

易得的方程为.则,,,

所以,即三点共线.

当直线的斜率存在时,设的方程为

联立方程 消去y,得.

由题意,得恒成立,故.

直线的方程为. ,得.

又因为

则直线的斜率分别为

所以.

上式中的分子

所以. 所以三点共线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知变量之间的线性回归方程为,且变量之间的一-组相关数据如下表所示,则下列说法错误的是( )

A.可以预测,当时,B.

C.变量之间呈负相关关系D.该回归直线必过点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】太极图被称为中华第一图.广为人知的太极图,其形状如阴阳两鱼互抱在一起,因而被称为阴阳鱼太极鱼.已知,下列命题中:①在平面直角坐标系中表示的区域的面积为;②,使得;③,都有成立;④设点,则的取值范围是.其中真命题的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.已知曲线C的极坐标方程为ρ1-cos2θ=8cosθ,直线ρcosθ=1与曲线C相交于MN两点,直线l过定点P20)且倾斜角为αl交曲线CAB两点.

1)把曲线C化成直角坐标方程,并求|MN|的值;

2)若|PA||MN||PB|成等比数列,求直线l的倾斜角α

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为提高产品质量,某企业质量管理部门经常不定期地抽查产品进行检测,现在某条生产线上随机抽取100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.

1)求图中的值,并求综合评分的中位数;

2)用样本估计总体,以频率作为概率,按分层抽样的思想,先在该条生产线中随机抽取5个产品,再从这5个产品中随机抽取2个产品记录有关数据,求这2个产品中恰有一个一等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中

(Ⅰ)当为偶函数时,求函数的极值;

(Ⅱ)若函数在区间上有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在高为的等腰梯形中,,且,将它沿对称轴折起,使平面平面,如图,点的中点,点在线段(不同于两点),连接并延长至点,使.

(1)证明:平面

(2),求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面平面是等腰直角三角形,,四边形是直角梯形,分别为的中点.

1求异面直角所成角的大小;

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面为等边三角形,的中点.

1)证明:

2)若,求二面角平面角的余弦值.

查看答案和解析>>

同步练习册答案