精英家教网 > 高中数学 > 题目详情
对于正整数n,若n=pq(p≥q,p,q∈N*),当p-q最小时,则称pq为n的“最佳分解”,规定f(n)=
q
p
.关于f(n)有下列四个判断:
①f(4)=1;②f(13)=
1
13
;③f(24)=
3
8
;④f(2013)=
1
2013

其中正确的序号是
 
分析:将各个数的分解因式写出,利用f(n)的定义求出求出各个f(n),从而判断出各命题的正误.
解答:解:对于①,因为4=1×4=2×2,所以f(4)=1,故①正确;
对于②,因为13=13×1;所以f(13)=
1
13
,故②正确;
对于③,对于②,因为24=1×242×12=3×8=4×6所以f(24)=
4
6
=
2
3
,故③不正确;
对于④,因为2013=2013×1=3×671=11×183=61×33,所以f(2013)=
33
61
,故④不正确.
故答案为:①②;
点评:本题考查通过题中的新定义解题,关键理解新定义.新定义题是常考的题型要重视.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在xOy平面上有一系列的点P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)…对于正整数n,点Pn位于函数y=x2(x≥0)的图象上,以点Pn为圆心的⊙Pn与x轴相切,且⊙Pn与⊙Pn+1又彼此外切,若x1=1,且xn+1<xn
(1)求证:数列{
1
xn
}
是等差数列;
(2)设⊙Pn的面积为SnTn=
S1
+
S2
+
S3
+…+
Sn
,求证:Tn
3
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}的前n项和为Sn,数列{an2}的前n项和为Tn,满足a1=1,Tn=
4
3
-
1
3
(p-Sn)2
,其中p为常数.
(1)求p的值及数列{an}的通项公式;
(2)①是否存在正整数n,m,k(n<m<k),使得an,am,ak成等差数列?若存在,指出n,m,k的关系;若不存在,请说明理由;
②若对于任意的正整数n,都有an,2xan+1,2yan+2成等差数列,求出实数x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄浦区二模)已知数列{an}具有性质:①a1为整数;②对于任意的正整数n,当an为偶数时,an+1=
an
2
;当an为奇数时,an+1=
an-1
2

(1)若a1=64,求数列{an}的通项公式;
(2)若a1,a2,a3成等差数列,求a1的值;
(3)设a1=2m-3(m≥3且m∈N),数列{an}的前n项和为Sn,求证:Sn2m+1-m-5.(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,满足关系Sn=2an-2.

(1)求数列{an}的通项公式;

(2)设数列{bn}的前n项和为Tn,且bn=,求证:对任意正整数n,总有Tn<2;

(3)在正数数列{cn}中,设(cn)n+1=an+1(n∈N*),求数列{lncn}中的最大项.

(文)已知数列{xn}满足xn+1-xn=()n,n∈N*,且x1=1.设an=xn,且T2n=a1+2a2+3a3+…+ (2n-1)a2n-1+2na2n.

(1)求xn的表达式;

(2)求T2n;

(3)若Qn=1(n∈N*),试比较9T2n与Qn的大小,并说明理由.

查看答案和解析>>

同步练习册答案