精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数,),为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为

(Ⅰ)求直线的普通方程和曲线的直角坐标方程;

(Ⅱ)设,直线交曲线两点,是直线上的点,且,当最大时,求点的坐标.

【答案】(Ⅰ),曲线(Ⅱ)

【解析】试题分析:

(Ⅰ)将直线的参数方程消去参数可得普通方程,利用转化公式可将曲线C的极坐标方程化为直角坐标方程.(Ⅱ)根据直线的参数方程中参数t的几何意义求解,并结合三角函数的知识可得当时,最大,此时最大.然后利用参数方程可得点的坐标.

试题解析:

(Ⅰ)由为参数)消去参数可得

∴直线的普通方程为

可得

代入上式可得

∴曲线的直角坐标方程为

(Ⅱ)设直线上的三点所对应的参数分别为

代入

整理得

异号,

,即时,最大,此时最大,

,此时,代入可得此时点的坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求函数的最小值;

2)若对于任意恒成立,求a的取值范围;

(3)若,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,.

(1)证明:

(2)若平面平面,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题错误的是(  )

A. pq为假命题,则pq为假命题

B. ab∈[0,1],则不等式a2b2<成立的概率是

C. 命题“x∈R,使得x2x+1<0”的否定是“x∈R,x2x+1≥0”

D. 已知函数f(x)可导,则“f′(x0)=0”是“x0是函数f(x)的极值点”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经销商销售某种产品,在一个销售季度内,每售出该产品获利润元;未售出的产品,每亏损元.根据以往的销售记录,得到一个销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了该产品.用(单位:,)表示下一个销售季度内的市场需求量,(单位:元)表示下一个销售季度内经销该产品的利润.

(1)将表示为的函数;

(2)根据直方图估计利润不少于元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆上

)求椭圆的方程

设动直线与椭圆有且仅有一个公共点,判断是否存在以原点为圆心的圆,满足此圆与相交于两点 (两点均不在坐标轴上),且使得直线的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值,若,则的最小值是(

A. 15 B. -15 C. 10 D. -13

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

判断在定义域上的单调性;

上的最小值为2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是菱形,∠ADC=60°,侧面PDC是正三角形,平面PDC⊥平面ABCDCD=2,MPB的中点.

(1)求证:PA⊥平面CDM

(2)求二面角DMCB的余弦值.

查看答案和解析>>

同步练习册答案